首页
归档
友情链接
关于
Search
1
在wsl2中安装archlinux
88 阅读
2
nvim番外之将配置的插件管理器更新为lazy
73 阅读
3
2018总结与2019规划
55 阅读
4
PDF标准详解(五)——图形状态
37 阅读
5
为 MariaDB 配置远程访问权限
33 阅读
软件与环境配置
博客搭建
从0开始配置vim
Vim 从嫌弃到依赖
archlinux
Emacs
MySQL
Git与Github
AndroidStudio
cmake
读书笔记
编程
PDF 标准
从0自制解释器
qt
C/C++语言
Windows 编程
Python
Java
算法与数据结构
PE结构
Thinking
FIRE 运动
菜谱
登录
Search
标签搜索
c++
c
学习笔记
windows
文本操作术
编辑器
NeoVim
Vim
win32
VimScript
emacs
linux
文本编辑器
Java
elisp
反汇编
OLEDB
数据库编程
数据结构
内核编程
Masimaro
累计撰写
311
篇文章
累计收到
27
条评论
首页
栏目
软件与环境配置
博客搭建
从0开始配置vim
Vim 从嫌弃到依赖
archlinux
Emacs
MySQL
Git与Github
AndroidStudio
cmake
读书笔记
编程
PDF 标准
从0自制解释器
qt
C/C++语言
Windows 编程
Python
Java
算法与数据结构
PE结构
Thinking
FIRE 运动
菜谱
页面
归档
友情链接
关于
搜索到
190
篇与
的结果
2017-10-09
使用FormatMessage函数编写一个内核错误码查看器
在编写驱动程序的时候,常用的一个结构是NTSTATUS,它来表示操作是否成功,但是对于失败的情况它的返回码过多,不可能记住所有的情况,应用层有一个GetLastError函数,根据这个函数的返回值可以通过错误查看器来查看具体的错误原因,但是内核中就没有这么方便了,我之前在网上找资料的时候发现很多人都是把错误码和它的具体原因都列举出来,然后人工进行对照查找,这样很不方便,有没有类似于应用层上错误码查看工具的东西呢?终于皇天不负有心人,我在微软官网上找到了FormatMessage的说明,自己实现了这个功能,现在讲这个部分记录下来,以供大家参考void CNTLookErrorDlg::OnBnClickedBtnLookup() { // TODO: 查找错NTSTATUS值对应的错误 LPVOID lpMessageBuffer; HMODULE Hand = LoadLibrary(_T("NTDLL.DLL")); DWORD dwErrCode = 0; dwErrCode = GetDlgItemInt(IDC_EDIT_ERRCODE); FormatMessage( FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_FROM_HMODULE, Hand, dwErrCode, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPTSTR) &lpMessageBuffer, 0, NULL ); // Now display the string. GetDlgItem(IDC_EDIT_ERRMSG)->SetWindowText((LPTSTR)lpMessageBuffer); // Free the buffer allocated by the system. LocalFree( lpMessageBuffer ); FreeLibrary(Hand); }这是用mfc写的一段代码,首先加载NTDLL.dll文件,然后调用FormatMessage,第一个参数需要新加入FORMAT_MESSAGE_FROM_HMODULE表示需要从某个模块中取出错误码和具体字符串之间的对应关系,然后将第二个参数传入dll的句柄,这个dll中记录了内核中错误码和对应字符串的信息。如果不加这个标志,那么默认从系统中获取,也就是获取应用层的GetLastError中返回的信息与错误字符串的对应关系。有了这个信息,剩下的就交给FormatMessage来进行格式化啦。这样一个简单的工具就完成了,再也不用满世界的找对应关系然后手工对比了,程序的运行结果如下:
2017年10月09日
5 阅读
0 评论
0 点赞
2017-09-11
Windows服务框架与服务的编写
从NT内核开始,服务程序已经变为一种非常重要的系统进程,一般的驻守进程和普通的程序必须在桌面登录的情况下才能运行,而许多系统的基础程序必须在用户登录桌面之前就要运行起来,而利用服务,可以很方便的实现这种功能,而且服务程序一般不予用户进行交互,可以安静的在后台执行,合理的利用服务程序可以简化我们的系统设计,比如Windows系统的日志服务,IIS服务等等。服务程序本身是依附在某一个可执行文件之中,系统将服务安装在注册表中的HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services位置,当需要执行服务程序时,由系统的服务控制管理器在注册表中对应的位置读取服务信息,并启动对应的程序。下面从几个方面详细说明服务程序的基本框架服务程序的框架服务程序本身也是依附在exe或者dll文件中,一般一个普通的可执行文件中可以包含一个或者多个服务,但是为了代码的维护性,一般一个程序总是只包含一个服务。服务程序是由服务管理器负责调度,控制的,所以我们在编写服务程序的时候必须满足服务控制管理器的调度,必须包含:立即调用StartServiceCtrlDispatchar函数把进程的主线程连接到ServiceControlManager的主函数在进程中运行的各个服务的入口点函数ServiceMain在进程中运行的各个服务的控制处理函数HandlerServiceControlManager函数的原型如下:BOOL WINAPI StartServiceCtrlDispatcher( __in const SERVICE_TABLE_ENTRY* lpServiceTable );函数参数是一个SERVICE_TABLE_ENTRY类型的指针,这个类型的定义如下:typedef struct _SERVICE_TABLE_ENTRY { LPTSTR lpServiceName; LPSERVICE_MAIN_FUNCTION lpServiceProc; } SERVICE_TABLE_ENTRY, *LPSERVICE_TABLE_ENTRY;这个结构是一个服务名称和对应入口函数指针的映射。在传入的时候必须给一个该类型的数组,数组的每一项都代表一个服务与其入口函数指针的映射,同时这个数组的最后一组必须为NULL当启动服务的时候,系统会启动对应的进程,当进程代码执行到StartServiceCtrlDispatcher时,程序由服务控制管理器接管,服务控制管理器根据需要启动的服务名称,在传入的数组指针中,找到对应的入口函数,然后调用它,当对应的入口函数返回时结束服务,并将后续代码的控制权转交给对应主进程,由主进程接着执行后面的代码在入口函数中我们必须给服务一个控制管理程序,这个程序主要是用来处理服务程序接受到的各种控制消息,比如启动服务,暂停服务,停止服务等,这个函数有点类似于Windows 窗口程序中的窗口过程。这个函数由我们自己编写,然后调用函数RegisterServiceCtrlHandler(Ex) 将服务名称与对应的控制函数绑定,每当有一个控制事件发生时都会调用我们注册的函数进行处理,RegisterServiceCtrlHandler函数会返回一个句柄,作为服务的控制句柄。当我们要自己向服务控制管理器报告服务的当前状态时需要这个句柄。服务的启动过程已经安装的服务,被系统存储在注册表的HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services位置处,这个注册表项纪录了服务所依赖的exe或者dll文件,它的启动类型等信息,当我们尝试启动服务的时候,系统会在注册表的对应位置查找是否存在对应服务的表项,如果存在则启动对应的进程。当进程的代码执行到StartServiceCtrlDispatcher函数时,该进程将由服务控制管理器接管,服务控制管理器将会根据填入的SERVICE_TABLE_ENTRY,找到服务所对应的入口函数开启对应的服务线程并调用,在入口函数处会注册一个控制句柄,然后应该向服务控制管理程序报告当前状态为正在启动,然后执行服务的正式代码。(注意:由于服务的入口函数需要自己编写,所以这里提到的注册控制句柄,报告状态都应该是由程序员自己编写代码实现)Handler函数handler函数用来处理服务的控制请求,这个函数由RegisterServiceCtrlHandler(Ex)函数注册到系统,当服务控制请求到来时,由服务的主线程的控制分发线程来调用。综合上面的内容,可以看到一个服务程序应该是至少涉及到3个线程,进程的主线程,服务线程,控制分发线程,RegisterServiceCtrlHandler(Ex)的原型如下:SERVICE_STATUS_HANDLE WINAPI RegisterServiceCtrlHandlerEx( __in LPCTSTR lpServiceName, __in LPHANDLER_FUNCTION_EX lpHandlerProc, __in_opt LPVOID lpContext );不带Ex的版本只有前两个参数,带Ex版本的第3个参数是一个传入到对应的控制函数中的参数。对应提供的控制管理函数的原型如下:DWORD WINAPI HandlerEx( __in DWORD dwControl, __in DWORD dwEventType, __in LPVOID lpEventData, __in LPVOID lpContext );第一个参数是一个控制码,类似于GUI程序中的消息,根据这个控制码就可以知道对应的控制消息,下面列举常见的控制码:控制码含义SERVICE_CONTROL_STOP请求服务停止SERVICE_CONTROL_PAUSE请求暂停服务SERVICE_CONTROL_CONTINUE请求恢复暂停的服务SERVICE_CONTROL_INTERROGATE请求服务立即更新它的当前状态信息给服务控制管理程序SERVICE_CONTROL_SHUTDOWN请求服务执行清理任务,因为系统正在关机.由于只有非常有限的时间用来关机,所以这个控制只应由绝对需要关机的服务使用.例如:事件登录服务需要清理维护的文件中的脏字节,或服务需要关机以便当系统在关机状态时网络连接不能进行. 如果服务关键要花时间,并发出STOP_PENDING状态信息,强烈建议这些消息包括一个等待提示使得服务控制程序知道在给系统指明服务关机完成之前要等多长时间.系统给服务控制管理器有限的时间(约20秒)完成服务关机,在这个时间后无论服务关机动作是否完成都进行系统关机第二个参数是事件类型,对于有的控制码,它可能含有子控制类型来详细描述它,就好像WM_COMMAND消息中有子控件的相关消息第三个参数是事件参数,这个参数是子控制码对应的参数第四个参数是上面带Ex的函数第三个参数传进来的内容每次Handler函数被调用时,服务必须调用SetServiceStatus函数把状态报告给服务管理器程序注意:即使状态无变化也要报告服务控制管理器在服务中一般有3类对象(在这并不是指Windows系统的内核对象,这里只是为了便于理解给出的一个分类):服务程序对象:服务本身的代码,一般是服务主要完成的功能代码服务控制对象:用来控制服务,向服务发送执行服务管理对象:用来响应对应的控制码,主要是指服务的handler函数与GUI程序相类比,服务对象就好比GUI程序本身,服务控制对象就好像我们在操作GUI程序,比如点击鼠标,而服务控制对象就像窗口的窗口过程服务管理器由SCManager对象代表。SCManager对象是持有服务对象的容器对象。SCManager对象和服务对象的句柄类型是SC_HANDLE。我们可以使用函数OpenService来在服务管理器中打开对应服务获取服务对象的句柄,或者使用函数CreateService在服务管理器中创建一个新服务并返回服务的句柄后面关于服务的控制操作请参考本人之前写的一篇关于服务控制管理器的编写的博客点击这里下面通过一个封装的Service库来说明服务程序的框架。这个简单的类的详细代码请点击这里下载该项目中主要定义了三个类,其中CFSZService类是所有服务类的基类,CServiceCtrl是服务的控制类,该类用于控制服务,这个类中的所有函数都是静态函数。另外为了测试我从CFSZService类上派生了一个类——CTestService,用来编写服务的具体代码。如果以后想要使用这个项目中的代码,可以进行如下操作:FSZService类中派生一个新类,并重载基类的RunService,在这个服务中编写具体的服务代码即可在相应位置调用DECLARE_SERVICE_TABLE_ENTRY宏,用来声明一个SERVICE_TABLE_ENTRY变量,用来绑定服务和对应的入口函数在相应位置添加代码:IMPLAMENT_SERVICE_MAIN(GetSystemInfoService, CTestService) BEGIN_SERVICE_MAP() ON_SERVICE_MAP(GetSystemInfoService, CTestService) END_SERIVCE_MAP()第一个宏用来定义了一个函数,该函数是服务的入口函数,需要传入服务名称,服务的类名称。第二个宏用来将服务名和它对应的入口函数进行绑定。在主函数处调用CFSZService::RegisterService(),在该函数里面会调用StartServiceCtrlDispatcher,一遍让服务控制管理程序来接管服务代码代码的整体说明服务基类的定义如下:class CFSZService { public: typedef CAtlMap<CString, CFSZService *> CFSZServiceMap; //服务名称和对应的服务对象 CFSZService(const CString& csSrvName); ~CFSZService(void); virtual DWORD Run(DWORD dwArgc, LPTSTR* lpszArgv); virtual BOOL OnInitService(DWORD dwArgc, LPTSTR* lpszArgv); //初始化服务 virtual DWORD RunService(); //运行服务 void SetServiceStatusHandle(SERVICE_STATUS_HANDLE); static DWORD WINAPI HandlerEx(DWORD dwControl, DWORD dwEventType, LPVOID lpEventData, LPVOID lpContext); static BOOL RegisterService(); //服务命令处理函数 protected: virtual DWORD OnStop(); virtual DWORD OnUserControl(DWORD dwControl); virtual DWORD OnStart(); virtual DWORD OnContinue(); virtual DWORD OnPause(); virtual DWORD OnShutdown(); virtual DWORD OnInterrogate(); virtual DWORD OnShutDown(); protected://设备变更事件通知处理 SERVICE_CONTROL_DEVICEEVENT virtual DWORD OnDeviceArrival(PDEV_BROADCAST_HDR pDbh){return 0;} virtual DWORD OnDeviceRemoveComplete(PDEV_BROADCAST_HDR pDbh){return 0;} virtual DWORD OnDeviceQueryRemove(PDEV_BROADCAST_HDR pDbh){return 0;} virtual DWORD OnDeviceQueryRemoveFailed(PDEV_BROADCAST_HDR pDbh){return 0;} virtual DWORD OnDeviceRemovePending(PDEV_BROADCAST_HDR pDbh){return 0;} virtual DWORD OnCustomEvent(PDEV_BROADCAST_HDR pDbh){return 0;} protected://硬件配置文件发生变动 SERVICE_CONTROL_HARDWAREPROFILECHANGE virtual DWORD OnConfigChanged(){return 0;} virtual DWORD OnQueryChangeConfig(){return 0;} virtual DWORD OnConfigChangeCanceled(){return 0;} protected://设备电源事件 SERVICE_CONTROL_POWEREVENT virtual DWORD OnPowerSettingChange(PPOWERBROADCAST_SETTING pPs){return 0;} protected://session 发生变化 SERVICE_CONTROL_SESSIONCHANGE virtual DWORD OnWTSConsoleConnect(PWTSSESSION_NOTIFICATION pWn){return 0;} virtual DWORD OnWTSConsoleDisconnect(PWTSSESSION_NOTIFICATION pWns){return 0;} virtual DWORD OnWTSRemoteConnect(PWTSSESSION_NOTIFICATION pWns){return 0;} virtual DWORD OnWTSRemoteDisconnect(PWTSSESSION_NOTIFICATION pWns){return 0;} virtual DWORD OnWTSSessionLogon(PWTSSESSION_NOTIFICATION pWns){return 0;} virtual DWORD OnWTSSessionLogoff(PWTSSESSION_NOTIFICATION pWns){return 0;} virtual DWORD OnWTSSessionLock(PWTSSESSION_NOTIFICATION pWns){return 0;} virtual DWORD OnWTSSessionUnLock(PWTSSESSION_NOTIFICATION pWns){return 0;} virtual DWORD OnWTSSessionRemoteControl(PWTSSESSION_NOTIFICATION pWns){return 0;} protected: //内部的工具方法,设置服务为一个指定的状态 BOOL SetStatus(DWORD dwStatus,DWORD dwCheckPoint = 0,DWORD dwWaitHint = 0 ,DWORD dwExitCode = 0,DWORD dwAcceptStatus = SERVICE_CONTROL_INTERROGATE); BOOL SetStartPending(DWORD dwCheckPoint = 0,DWORD dwWaitHint = 0); //设为正在启动状态 BOOL SetContinuePending(DWORD dwCheckPoint = 0,DWORD dwWaitHint = 0); //设为正在继续运行状态 BOOL SetPausePending(DWORD dwCheckPoint = 0,DWORD dwWaitHint = 0); //设为正在暂停状态 BOOL SetPause(); //设为暂停状态 BOOL SetRunning(); //设为以启动状态 BOOL SetStopPending(DWORD dwCheckPoint = 0,DWORD dwWaitHint = 0); //设为正在停止状态 BOOL SetStop(DWORD dwExitCode = 0); //设为以停止状态 BOOL ReportStatus(DWORD, DWORD, DWORD);//向服务管理器报告当前服务状态 protected: CString m_csSrvName; //服务名称 DWORD m_dwCurrentStatus; //当前状态 SERVICE_STATUS_HANDLE m_hCtrl; //控制句柄 public: static CFSZServiceMap ms_SrvMap; };在这个基类中主要定义了3类函数,分别是:服务本身的代码函数:用来处理服务的业务,实现服务的功能服务控制管理函数:包括各种控制消息的响应函数和服务控制句柄的管理函数服务状态设置函数:主要用来设置服务的状态该项目使用Atl 和CString,一般在控制台程序中想要使用这二者只需要包含头文件:atlcoll.h、atlstr.h即可CFSZServiceMap 成员该成员是用来将服务名称和对应的类对象关联起来,这样以后根据服务名称就可以找到对应的服务类的对象指针,该类型定义如下:typedef CAtlMap<CString, CFSZService *> CFSZServiceMap;在每个类的构造函数中进行初始化:CFSZService::CFSZService(const CString& csSrvName) { m_csSrvName = csSrvName; ms_SrvMap.SetAt(m_csSrvName, this); }服务的入口函数服务的入口函数是利用宏定义的一个函数,每当需要添加一个服务的时候都需要调用宏IMPLAMENT_SERVICE_MAIN来定义一个对应的服务入口ServiceMain,该函数的定义如下:#define IMPLAMENT_SERVICE_MAIN(srvName, className)\ VOID WINAPI _ServiceMain_##className(DWORD dwArgc, LPTSTR* lpszArgv)\ {\ CFSZService *pThis = NULL;\ if(!CFSZService::ms_SrvMap.Lookup(_T(#srvName), pThis))\ {\ pThis = dynamic_cast<CFSZService*>( new className(_T(#srvName)) );\ }\ else\ {\ return;\ }\ assert(NULL != pThis);\ SERVICE_STATUS_HANDLE hss = RegisterServiceCtrlHandlerEx(_T(#srvName), CFSZService::HandlerEx, reinterpret_cast<LPVOID>(pThis));\ assert(NULL != hss);\ pThis->SetServiceStatusHandle(hss);\ pThis->Run(dwArgc, lpszArgv);\ delete dynamic_cast<##className*>(pThis);\ }上面的代码首先根据传入的类名动态创建了一个服务类(由于这里服务对象都是动态创建和销毁的,所以在其他地方不需要创建服务对象),然后调用RegisterServiceCtrlHandlerEx构造了一个服务控制句柄,然后调用类的SetServiceStatusHandle函数来将对应的服务控制句柄保存起来最后调用Run函数来运行服务的正式代码,最后当Run函数执行完毕后,服务的相应工作也做完了,这个时候删除了这个类。Run函数的定义如下:DWORD CFSZService::Run(DWORD dwArgc, LPTSTR* lpszArgv) { assert(NULL != this); if (OnInitService(dwArgc, lpszArgv)) { RunService(); } return 0; }这个函数中使用了OnInitService函数来进一步初始化服务相关信息,该函数提供了一个服务初始化的时机。比如调用相关函数进行socket的初始化或者对com环境进行初始化等等。然后调用RunService执行服务正式的代码。HandlerEx函数在前面的宏IMPLAMENT_SERVICE_MAIN中调用了RegisterServiceCtrlHandlerEx将函数HandlerEx作为服务控制码的处理函数,调用的时候将服务类对象的指针通过第四个参数传入,这样在静态函数中就可以使用服务的类成员函数,函数HandlerEx的部分代码如下: DWORD dwRet = ERROR_SUCCESS; if( NULL == lpContext ) { return ERROR_INVALID_PARAMETER; } CFSZService*pService = reinterpret_cast<CFSZService*>(lpContext); if( NULL == pService ) { return ERROR_INVALID_PARAMETER; } switch(dwControl) { case SERVICE_CONTROL_STOP: //0x00000001 停止服务器 { dwRet = pService -> OnStop(); } break; ... }在该函数中,将所有的控制吗都列举出来,针对不同的控制吗都调用的对应的处理函数,并且这些函数都是虚函数,所以在派生类中需要处理某个控制消息就重写某个对应的函数即可。最后再重新屡一下这个类在调用时的基本情况:在主函数中调用CFSZService::RegisterService();函数将之前我们通过一组BEGIN_SERVICE_MAP、ON_SERVICE_MAP、END_SERVICE_MAP组成的映射关系注册到系统的服务控制管理器中。这个函数单独调用了StartServiceCtrlDispatcher函数,一旦代码执行到这个地方,服务控制管理器会根据之前绑定的服务名称与入口函数的对应关系调用对应的入口函数入口函数是通过宏IMPLAMENT_SERVICE_MAIN定义的,在入口函数中首先动态创建了一个服务类,然后给这个服务注册服务控制句柄,并且服务控制函数为HandlerEx。接着,服务的入口函数调用对应服务的Run函数,在Run函数中调用OnInitService进行服务的初始化和调用RunService执行服务的正式代码,所以在重载类中可以重载这两个方法进行初始化和进行服务的相关操作当外部对服务进行控制时,服务控制管理器调用HandleEx函数进行相关的操作在HandleEx中会解析对应的控制事件,并调用对应的虚函数,所以如果想要处理某个消息,则重写对应的控制函数即可
2017年09月11日
4 阅读
0 评论
0 点赞
2017-08-14
Vista 及后续版本的新线程池
在上一篇的博文中,说了下老版本的线程池,在Vista之后,微软重新设计了一套线程池机制,并引入一组新的线程池API,新版线程池相对于老版本的来说,它的可控性更高,它允许程序员自己定义线程池,并规定线程池中的线程数量和其他一些属性。线程池使用线程池的使用主要需要下面的四步:创建工作项提交工作项等待工作项完成清理工作项在前面说的四种线程池在使用上都是这4步,只是使用的API函数不同,每种线程池的每一步都有一个对应的API,总共有16个API普通线程池创建工作项的API为PTP_WORK WINAPI CreateThreadpoolWork( __in PTP_WORK_CALLBACK pfnwk, __inout_opt PVOID pv, __in_opt PTP_CALLBACK_ENVIRON pcbe );第一个参数是一个回调函数,当提交后,线程池中的线程会执行这个回调函数第二个参数是传递给回调函数的参数第三个参数是一个表示回调环境的结构,这个在后面会说回调函数的原型VOID CALLBACK WorkCallback( __inout PTP_CALLBACK_INSTANCE Instance, __inout_opt PVOID Context, __inout PTP_WORK Work );第一个参数用于表示线程池当前正在处理的一个工作项的实例,在后面会说它怎么用第二个参数是传给回调函数的参数的指针第三个参数是当前工作项的结构创建工作项完成之后调用SubmitThreadpoolWork将工作项提交到对应的线程池,由线程池中的线程处理这个工作项,该函数原型如下:VOID WINAPI SubmitThreadpoolWork( __inout PTP_WORK pwk );这个函数只有一个参数那就是工作项的指针,即我们想将哪个工作项提交。提交工作项之后,在需要同步的地方,调用函数WaitForThreadpoolWorkCallbacks,等待线程池中的工作项完成,该函数原型如下VOID WINAPI WaitForThreadpoolWorkCallbacks( __inout PTP_WORK pwk, __in BOOL fCancelPendingCallbacks );最后一个参数表示线程池是否需要执行未执行的工作项,注意它只能取消执行还没有开始执行的工作项,而不能取消已经有线程开始执行的工作项,最后调用函数CloseThreadpoolWork清理工作项,该函数的原型如下:VOID WINAPI CloseThreadpoolWork( __inout PTP_WORK pwk );就我个人的理解,TP_WORK应该保存的是一个工作项的信息,包含工作项的回调以及传递个回调函数的参数,每当提交一个工作项就是把这个结构放入到线程池的队列中,当线程池中有空闲线程的时候从队列中取出这个结构,将结构中的回调函数参数传递给回调函数,并调用它。我们可以重复提交同一个工作项多次,但是每个工作项一旦定义好了,那么传递给对应回调函数的参数应该是固定的,后期是没办法更改它的。它的等待函数调用时根据第二个参数,如果为TRUE则将线程池队列中的工作项清除,然后等待所有线程都为空闲状态时返回,而当参数为FALSE时,就不对队列中的工作项进行操作,并且一直等到线程池中的所有线程为空闲。下面是一个具体的使用例子:VOID CALLBACK MyWorkCallback( PTP_CALLBACK_INSTANCE Instance, PVOID Parameter, PTP_WORK Work ) { int nWaitTime = 4; printf("线程[%04x]将等待%ds\n", GetCurrentThreadId(), nWaitTime); Sleep(nWaitTime * 1000); printf("线程[%04x]执行完毕\n", GetCurrentThreadId()); } int _tmain(int argc, _TCHAR* argv[]) { PTP_WORK_CALLBACK workcallback = MyWorkCallback; PTP_WORK work = CreateThreadpoolWork(workcallback, NULL, NULL); //创建工作项 for (int i = 0; i < 4; i++) { SubmitThreadpoolWork(work); //提交工作项 } //等待线程池中的所有工作项完成 WaitForThreadpoolWorkCallbacks(work, FALSE); //关闭工作项 CloseThreadpoolWork(work); return 0; }定时器线程池定时器线程池中使用的对应的API分别为CreateThreadpoolTimer、SetThreadpoolTimer、WaitForThreadpoolTimerCallbacks和CloseThreadpoolTimer,这些函数的参数与之前的函数参数基本类似,区别比较大的是SetThreadpoolTimer,由于涉及到定时器,所以这里的参数稍微复杂一点VOID WINAPI SetThreadpoolTimer( __inout PTP_TIMER pti, __in_opt PFILETIME pftDueTime, __in DWORD msPeriod, __in_opt DWORD msWindowLength );第二个参数表示定时器触发的时间,它是一个64位的整数,如果为正数表示一个绝对的时间,表示从1960年到多少个100ns的时间后触发,如果为负数则表示从设置之时起经过多少时间后触发,单位为微秒(转化为秒是1000 * 1000)第三个参数每隔多长时间触发一次,如果只是想把这个定时器作为一次性的,和第四个参数没有用处,而如果想让线程池定期的触发它,这个值就是定期触发的间隔 时间,单位为毫秒第四个参数是用来给回调函数的执行时机增加一定的随机性,如果这个定时器是一个定期触发的定时器,那么这个值告诉线程池,可以在自定时器设置时间起,在(msPeriod - msWindowLength, mePeriod + msWindowsLong)这个区间之后的任意时间段触发另外我自己在编写测试代码的时候发现有的时候调用WaitForThreadpoolTimerCallbacks可能立即就返回了,后来我自己分析可能的原因是这个函数会在线程池队列中没有需要处理的工作项,并且线程池中线程为空闲的时候返回,当我使用定时器的时候,在等待时可能这个时候定时器上的时间未到,而线程池中又没有需要处理的定时器的工作项,所以它就返回了从而未达到等待的效果。下面是一个使用的具体例子,这个例子是《Windows核心编程》这本书中的例子,我觉得它里面有一个更改MessageBox显示信息的功能,所以将其修改了下作为例子int g_nWaitTime = 10; TCHAR g_szTitle[] = _T("提示"); #define ID_MSGBOX_STATIC_TEXT 0x0000ffff //MessageBox上内容部分的控件ID VOID CALLBACK TimerCallback(PTP_CALLBACK_INSTANCE Instance, PVOID Context, PTP_TIMER Timer) { HWND hWnd = FindWindow(NULL, g_szTitle); //找到MessageBox所对应的窗口句柄 if (NULL != hWnd) { TCHAR szText[1024] = _T(""); StringCchPrintf(szText, 1024, _T("您将有%ds的时间"), --g_nWaitTime); SetDlgItemText(hWnd, ID_MSGBOX_STATIC_TEXT, szText); //更改显示信息 } if (g_nWaitTime == 0) { ExitProcess(0); } } int _tmain(int argc, _TCHAR* argv[]) { //创建定时器历程 PTP_TIMER pTimer = CreateThreadpoolTimer(TimerCallback, NULL, NULL); //将定时器历程加入到线程池 ULARGE_INTEGER uDueTime = {0}; FILETIME FileDueTime = {0}; uDueTime.QuadPart = (LONGLONG) -(1 * 10 * 1000 * 1000); //时间为1s FileDueTime.dwHighDateTime = uDueTime.HighPart; FileDueTime.dwLowDateTime = uDueTime.LowPart; SetThreadpoolTimer(pTimer, &FileDueTime, 1000, 0); //每1s调用一次 WaitForThreadpoolTimerCallbacks(pTimer, FALSE); //此处调用等待函数会立即返回 TCHAR szText[] = _T("您将有10s的时间"); MessageBox(NULL, szText, g_szTitle, MB_OK); //关闭工作项 CloseThreadpoolTimer(pTimer); return 0; }同步对象线程池对这种线程池的使用主要调用这样几个函数: CreateThreadpoolWait、SetThreadpoolWait、WaitForThreadpoolWaitCallbacks、CloseThreadpoolWait ,这几个函数的使用与之前的普通线程池的使用类似,在这就不再进行说明直接给例子VOID CALLBACK WaitCallback(PTP_CALLBACK_INSTANCE Instance, PVOID Context, PTP_WAIT Wait, TP_WAIT_RESULT WaitResult) { if (WaitResult == WAIT_OBJECT_0) { printf("[%04x] wait the event\n", GetCurrentThreadId()); }else if (WaitResult == WAIT_TIMEOUT) { printf("[%04x] time out\n", GetCurrentThreadId()); } } int _tmain(int argc, _TCHAR* argv[]) { //创建等待线程池 PTP_WAIT pWait = CreateThreadpoolWait(WaitCallback, NULL, NULL); //创建事件 HANDLE hEvent = CreateEvent(NULL, FALSE, FALSE, NULL); //等待时间为1s FILETIME ft = {0}; ULARGE_INTEGER uWaitTime = {0}; uWaitTime.QuadPart = (LONGLONG) - 1 * 1000 * 1000; ft.dwHighDateTime = uWaitTime.HighPart; ft.dwLowDateTime = uWaitTime.LowPart; for (int i = 0; i < 5; i++) { //模拟等待5次 SetThreadpoolWait(pWait, hEvent, &ft); Sleep(1000); //休眠 SetEvent(hEvent); } WaitForThreadpoolWaitCallbacks(pWait, FALSE); CloseThreadpoolWait(pWait); CloseHandle(hEvent); return 0; }这种类型的回调函数的WaitResult参数实际上是一个DWORD类型,表示调用这个回调的原因,WAIT_OBJECT_0表示同步对象变为有信号,WAIT_TIMEOUT表示超时WAIT_ABANDONED_0表示穿入的互斥量被遗弃(只有在同步对象为互斥量的时候才会有这种值)完成端口线程池完成端口线程池的使用主要用这些API:CreateThreadpoolIo、StartThreadpoolIo、WaitForThreadpoolIoCallbacks、CloseThreadpoolIo,这些函数的使用也是十分的简单,下面再次将之前的完成端口写日志的例子进行改写:int _tmain(int argc, _TCHAR* argv[]) { TCHAR szAppPath[MAX_PATH] = _T(""); GetAppPath(szAppPath); StringCchCat(szAppPath, MAX_PATH, _T("NewIocpLog.txt")); HANDLE hFile = CreateFile(szAppPath, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_FLAG_OVERLAPPED | FILE_ATTRIBUTE_NORMAL, NULL); if (hFile == INVALID_HANDLE_VALUE) { return 0; } //创建IOCP线程池 g_pThreadpoolIO = CreateThreadpoolIo(hFile, IoCompletionCallback, hFile, NULL); StartThreadpoolIo(g_pThreadpoolIO); //写入Unicode字节码 LPIOCP_OVERLAPPED pIocpOverlapped = (LPIOCP_OVERLAPPED)HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(IOCP_OVERLAPPED)); pIocpOverlapped->dwDataLen = sizeof(WORD); pIocpOverlapped->hFile = hFile; WORD dwUnicode = MAKEWORD(0xff, 0xfe); //构造Unicode前缀 pIocpOverlapped->pData = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(WORD)); CopyMemory(pIocpOverlapped->pData, &dwUnicode, sizeof(WORD)); //偏移文件指针 pIocpOverlapped->Overlapped.Offset = g_FilePointer.LowPart; pIocpOverlapped->Overlapped.OffsetHigh = g_FilePointer.HighPart; g_FilePointer.QuadPart += pIocpOverlapped->dwDataLen; //写文件 WriteFile(hFile, pIocpOverlapped->pData, pIocpOverlapped->dwDataLen, &pIocpOverlapped->dwWrittenLen, &pIocpOverlapped->Overlapped); //创建线程进行写日志操作 HANDLE hWrittenThreads[MAX_WRITE_THREAD]; for (int i = 0; i < MAX_WRITE_THREAD; i++) { hWrittenThreads[i] = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)WriteThread, &hFile, 0, NULL); } //等待所有写线程执行完成 WaitForMultipleObjects(MAX_WRITE_THREAD, hWrittenThreads, TRUE, INFINITE); for (int i = 0; i < MAX_WRITE_THREAD; i++) { CloseHandle(hWrittenThreads[i]); } //等待线程池中待处理的IO完成请求 WaitForThreadpoolIoCallbacks(g_pThreadpoolIo, FALSE); CloseHandle(hFile); //关闭IOCP线程池 CloseThreadpoolIo(g_pThreadpoolIO); return 0; } VOID CALLBACK WriteThread(LPVOID lpParam) { TCHAR szBuf[255] = _T("线程[%04x]模拟写入一条日志记录\r\n"); TCHAR szWrittenBuf[255] = _T(""); StringCchPrintf(szWrittenBuf, 255, szBuf, GetCurrentThreadId()); for (int i = 0; i < EVERY_THREAD_WRITTEN; i++) { //提交一个IOCP历程 StartThreadpoolIo(g_pThreadpoolIO); LPIOCP_OVERLAPPED lpIocpOverlapped = (LPIOCP_OVERLAPPED)HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(IOCP_OVERLAPPED)); size_t dwBufLen = 0; StringCchLength(szWrittenBuf, 255, &dwBufLen); lpIocpOverlapped->dwDataLen = dwBufLen * sizeof(TCHAR); lpIocpOverlapped->pData = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, (dwBufLen + 1) * sizeof(TCHAR)); CopyMemory(lpIocpOverlapped->pData, szWrittenBuf, dwBufLen * sizeof(TCHAR)); lpIocpOverlapped->hFile = *(HANDLE*)lpParam; //同步文件指针 *((LONGLONG*)&(lpIocpOverlapped->Overlapped.Pointer)) = InterlockedCompareExchange64(&g_FilePointer.QuadPart, g_FilePointer.QuadPart + lpIocpOverlapped->dwDataLen, g_FilePointer.QuadPart); //写文件 WriteFile(lpIocpOverlapped->hFile, lpIocpOverlapped->pData, lpIocpOverlapped->dwDataLen, &lpIocpOverlapped->dwWrittenLen, &lpIocpOverlapped->Overlapped); } } VOID CALLBACK IoCompletionCallback(PTP_CALLBACK_INSTANCE Instance,PVOID Context,PVOID Overlapped,ULONG IoResult,ULONG_PTR NumberOfBytesTransferred,PTP_IO Io) { LPIOCP_OVERLAPPED pIOCPOverlapped = (LPIOCP_OVERLAPPED)Overlapped; //释放对应的内存空间 printf("线程[%04x]得到IO完成通知,写入长度%d\n", GetCurrentThreadId(), pIOCPOverlapped->dwDataLen); if (pIOCPOverlapped->pData != NULL) { HeapFree(GetProcessHeap(), 0, pIOCPOverlapped->pData); } if (NULL != pIOCPOverlapped) { HeapFree(GetProcessHeap(), 0, pIOCPOverlapped); pIOCPOverlapped = NULL; } }在新版的完成端口的线程池中,每当需要进行IO操作时,要保证在IO操作之前调用StartThreadpoolIo提交请求。如果没有那么我们的回调函数将不会被执行。注意:后面两种线程池与旧版的相比,最大的区别在于新版的是一次性的,也就是每提交一次,它只会执行一次,要想让其不停触发就需要不停的进行提交,而旧版的只需要绑定,一旦相应的事件发生,他就会不停地的执行线程池控制回调函数的终止操作线程池提供了一种便利的方法,用来描述当我们的回调函数返回之后,应该执行的一些操作,通过这种方式,可以通知其他线程,回调函数已经执行完毕。通过调用下面的一些API可以设置对应的同步对象,在线程池外的其他线程等待同步对象就可以知道什么时候回调执行完毕函数终止操作LeaveCriticalWhenCallbackReturns当回调函数返回时,线程池会自动调用LeaveCritical,并在参数中传入指定的CRITICAL_SECTION结构ReleaseMutexWhenCallbackReturns当回调函数返回时,线程池会自动调用ReleaseMutexWhen并在参数中传入指定的HANDLEReleaseSemaphoreWhenCallbackReturns当回调函数返回时,线程会自动调用ReleaseSemphore并在参数中传入指定的HANDLESetEventWhenCallbackReturns当回调函数返回时,线程会自动调用SetEvent,并在参数中传入指定的HANDLEFreeLibraryWhenCallbackReturns当回调函数返回时,线程会自动调用FreeLibrary并在参数中传入指定的HANDLE前4个函数给我们提供了一种方式来通知另外一个线程,回调函数调用完成,而最后一个函数则提供了一种在回调函数调用完成之时,清理动态库的方式,如果回调函数是在dll中实现的,但是在回调函数结束之时,我们希望卸载这个dll,这个时候不能调用FreeLibrary,这个时候回调函数虽然完成了任务,但是在后面还有函数栈平衡的操作,如果在返回时,我们将dll从内存中卸载,必然会导致最后的栈平衡操作访问非法内存,从而时应用程序崩溃。但是我们可以调用FreeLibraryWhenCallbackReturns,完成这个任务。下面是一个具体的例子:typedef struct tagWAIT_STRUCT { HANDLE hEvent; DWORD dwThreadId; }WAIT_STRUCT, *LPWAIT_STRUCT; WAIT_STRUCT g_waitStruct = {0}; VOID CALLBACK WorkCallback(PTP_CALLBACK_INSTANCE Instance, PVOID Context, PTP_WORK Work) { g_waitStruct.dwThreadId = GetCurrentThreadId(); Sleep(1000 * 10); SetEventWhenCallbackReturns(Instance, *(HANDLE*)&g_waitStruct); } int _tmain(int argc, _TCHAR* argv[]) { PTP_WORK pWork = CreateThreadpoolWork(WorkCallback, NULL, NULL); g_waitStruct.hEvent = CreateEvent(NULL, FALSE, FALSE, NULL); SubmitThreadpoolWork(pWork); WaitForSingleObject(g_waitStruct.hEvent, INFINITE); printf("线程池中线程[%04x]执行完成\n", g_waitStruct.dwThreadId); CloseThreadpoolWork(pWork); return 0; }上面的代码首先创建一个无信号的event对象,然后在回调函数中调用SetEventWhenCallbackReturns,当回调函数完成之时就会将event设置为有信号,这样我们在主线程中就可以等待,一旦回调函数执行完成,event变为有信号,wait函数就会返回。同时我们定义一个结构体尝试着从线程池中带出一个线程ID,并在主线程中使用它对线程池进行定制上面在讨论四种线程池的时候,使用的都是系统自带的线程池,这些线程池由系统管理,我们只能使用,而不能对它们的一些属性进行定制,但是新版本的线程池中提供了这样的方式,要对线程池进行定制,不能使用系统已经定义好的线程池,得自己定义,定义线程池使用API函数CreateThreadPool,这个函数只有一个参数,这个参数是Windows的保留参数目前应该赋值为NULL。该函数会返回一个PTP_POOL 类型的值,这个值是一个指针,用来标识一个线程池。创建完成之后,我们可以函数SetThreadpoolThreadMaximum 或者SetThreadpoolThreadMinimum来规定线程池中的最大和最小线程。当不需要自定义的线程池的时候可以使用函数CloseThreadPool,来清理自定义线程池。线程池的回调环境线程池的回调环境规定了回调函数的执行环境,比如由哪个线程池中的线程来调用,对应线程池的版本,对应的清理器和其他的属性等等。环境的结构定义如下:typedef struct _TP_CALLBACK_ENVIRON { TP_VERSION Version; //线程池的版本 PTP_POOL Pool; //关联的线程池 PTP_CLEANUP_GROUP CleanupGroup; //对应的环境清理组 PTP_CLEANUP_GROUP_CANCEL_CALLBACK CleanupGroupCancelCallback; PVOID RaceDll; struct _ACTIVATION_CONTEXT *ActivationContext; PTP_SIMPLE_CALLBACK FinalizationCallback; union { DWORD Flags; struct { DWORD LongFunction : 1; DWORD Private : 31; } s; } u; } TP_CALLBACK_ENVIRON, *PTP_CALLBACK_ENVIRON;虽然这个结构微软对外公布,而且是可以在程序中直接使用的,但是最好不要这么做,我们应该使用它提供的API对其进行操作,首先可以调用InitializeThreadpoolEnvironment来创建一个对应的回调环境,对我们传入的TP_CALLBACK_ENVIRON变量进行初始化。然后可以调用函数SetThreadpoolCallbackPool来规定由哪个线程池来调用对应的回调函数,如果将参数ptpp传入NULL,则使用系统默认的线程池。另外还可以调用SetThreadpoolCallbackRunsLong 来告诉线程池,我们的任务需要较长的时间来执行。最后当我们不需要这个回调环境的时候可以使用函数DestroyThreadpoolEnvironment来清理这个结构。我自己在看这一块的时候很长时间都转不过弯来,总觉得回调环境是由线程池持有的,每个线程池都有自己的回调环境,其实这个是错误的,既然它叫做回调环境,自然与线程池无关,它是用来控制回调行为的。当我们在创建对应的任务时,最后一个参数就是回调环境的指针,在提交任务时会首先将任务提交到回调环境所规定的线程池中,由对应的线程池来处理。函数SetThreadpoolCallbackPool从表面意思来看是未线程池设置一个回调环境其实这个意思正好相反,是为某个回调指定对应调用的线程池。在后面就可以看到,回调环境可比线程池大的多线程池的清理组为了得体的销毁自定义的线程池(系统自定义线程池不会被销毁),我们需要知道系线程池中各个任务何时完成,只有当所有任务都完成时销毁线程池才算得体的销毁,只有这样才能顺利的清理相关资源。但是由于线程池中的各项任务可能由不同的线程提交,提交的时机,任务执行完所需要的时间各不相同,所以基本上不可能知道线程池中的任务何时完成。为了解决这个问题,新版的线程池提供了清理组的概念。TP_CALLBACK_ENVIRON结构的PTP_CLEANUP_GROUP就为对应的执行环境绑定了一个清理组。当线程池中的任务都处理完成时能够得体的清理线程池可以调用CreateThreadpoolCleanupGroup来创建一个清理组,然后调用SetThreadpoolCallbackCleanupGroup来将线程池与对应的清理组。它的原型如下:VOID SetThreadpoolCallbackCleanupGroup( __inout PTP_CALLBACK_ENVIRON pcbe, __in PTP_CLEANUP_GROUP ptpcg, __in_opt PTP_CLEANUP_GROUP_CANCEL_CALLBACK pfng );第一个参数是一个回调环境第二个参数是一个对应的清理组,这两个参数就将对应的回调环境和清理组关联起来第三个参数是一个回调函数,每当一个工作项被取消,这个函数将会被调用。对应的回调函数的原型如下:VOID NTAPI CleanupGroupCancelCallback(PVOID pvObjectContext, PVOID CleanupContext);每当创建一个任务时,如果最后一个参数不为NULL,那么对应的清理组中会增加一项,表示又增加一个需要潜在清理的任务。最后我们调用对应的清理工作项的函数时,相当于显示的将需要清理的项从对应的清理组中去除。当我们的应用程序想要销毁线程池时,调用函数CloseThreadpoolCleanupGroupMembers。这个函数相比于之前的WaitForThreadpoolTimerCallbacks来说,它可以等待线程池中的所有工作项,而不管工作项是哪种类型,而对应的wait函数只能等待对应类型的工作项。VOID WINAPI CloseThreadpoolCleanupGroupMembers( __inout PTP_CLEANUP_GROUP ptpcg, __in BOOL fCancelPendingCallbacks, __inout_opt PVOID pvCleanupContext );CloseThreadpoolCleanupGroupMembers函数的第二个参数也是一个BOOL类型,它的作用与对应的wait函数中第二个参数的作用相同。如果第二个参数设置为NULL,那么每当该函数取消一个工作项,对应的PTP_CLEANUP_GROUP_CANCEL_CALLBACK 类型的回调就要被调用一次CleanupGroupCancelCallback函数中第一个参数是被取消项的上下文,这个上下文是由对应的创建工作项的函数的pvContext参数传递进来的,而第二个参数是由CloseThreadpoolCleanupGroupMembers函数的第三个参数传递进来的。当所有的工作项被取消后调用CloseThreadpoolCleanupGroup来释放清理组所占的资源。最后调用DestroyThreadpoolEnviroment和CloseThreadPool这样就可以得体的关闭线程池下面是使用的一个例子:VOID NTAPI CleanupGroupCancelCallback(PVOID pvObjectContext, PVOID CleanupContext) { printf("有任务[%d][%d]被取消\n", *(int*)pvObjectContext, *(int*)CleanupContext); } VOID CALLBACK TimerCallback(PTP_CALLBACK_INSTANCE Instance, PVOID Context, PTP_TIMER Timer) { Sleep(1000); printf("有对应的定时器历程被调用\n"); } int _tmain(int argc, _TCHAR* argv[]) { TP_CALLBACK_ENVIRON environ = {0}; //创建回调环境 InitializeThreadpoolEnvironment(&environ); PTP_CLEANUP_GROUP pCleanUp = CreateThreadpoolCleanupGroup(); //创建清理组 PTP_POOL pool = CreateThreadpool(NULL); //创建自定义线程池 //设置线程池中的最大、最小线程数 SetThreadpoolThreadMinimum(pool, 2); SetThreadpoolThreadMaximum(pool, 8); //设置对应的回调环境和清理组 SetThreadpoolCallbackPool(&environ, pool); SetThreadpoolCallbackCleanupGroup(&environ, pCleanUp, CleanupGroupCancelCallback); //创建对应的工作项 int i = 1; PTP_TIMER pTimerWork = CreateThreadpoolTimer(TimerCallback, &i, &environ); ULARGE_INTEGER uDueTime = {0}; FILETIME ft = {0}; uDueTime.QuadPart = (LONGLONG) - 10 * 1000 *1000; //设置时间为10s ft.dwHighDateTime = uDueTime.HighPart; ft.dwLowDateTime = uDueTime.LowPart; SetThreadpoolTimer(pTimerWork, &ft, 10 * 1000, 0); //休眠1s保证定时器历程被提交 Sleep(1000); int j = 2; //等待所有历程执行完成,并清理资源 CloseThreadpoolCleanupGroupMembers(pCleanUp, TRUE, &j); CloseThreadpoolCleanupGroup(pCleanUp); DestroyThreadpoolEnvironment(&environ); CloseThreadpool(pool); return 0; }上面的例子中,首先定义了一个回调环境并进行初始化,然后定义自定义线程和对应的清理环境,并将他们绑定。并且在定义清理器时指定对应的回调函数。接着又定义了一个定时器线程并给一个上下文。然后提交这个定时器历程。为了保证能顺利提交,在主程序中等待1s。最后我们直接取消它,由于定时器触发的时间为10s这个时候肯定还没有执行,而根据之前说的,当我们取消一个已提交但是未执行的工作项时会调用对应的清理组规定的回调,这个时候CleanupGroupCancelCallback会被调用。它的参数的值分别由CreateThreadpoolTimer和CloseThreadpoolCleanupGroupMembers给出,所以最终输出结果如下:自定义线程池可以很方便的控制它的行为。但是为了要得体的清理它所以得加上一个清理组,最终当我们使用自定义线程池时,基本步骤如下:调用函数InitializeThreadpoolEnvironment初始化一个回调环境调用CreateThreadpoolCleanupGroup创建一个清理组,并根据需要给出对应的清理回调调用CreateThreadpool创建自定义线程池调用对应的函数,设置自定义线程池的相关属性调用函数SetThreadpoolCallbackPool将线程池与回调环境绑定调用函数SetThreadpoolCallbackCleanupGroup将回调环境与对应的清理组绑定调用对应的函数创建工作项,并提交调用函数CloseThreadpoolCleanupGroupMembers等待清理组中的所有工作项被执行完或者被取消调用CloseThreadpoolCleanupGroup关闭清理组并释放资源调用DestroyThreadpoolEnvironment清理回调环境调用CloseThreadpool函数关闭自定义的线程池使用清理组的方式清理工作项相比于调用对应的close函数清理工作项来说,显得更方便,一来自定义线程池中工作项的种类繁多,每个工作项都调用一个Close函数显得太复杂,而且当工作项过多时,不知道何时哪个工作项执行完,这个时候如果强行调用函数关闭工作项,显得有点暴力,所以用工作组的方式更为优雅一些
2017年08月14日
5 阅读
0 评论
0 点赞
2017-08-08
老版VC++线程池
在一般的设计中,当需要一个线程时,就创建一个,但是当线程过多时可能会影响系统的整体效率,这个性能的下降主要体现在:当线程过多时在线程间来回切换需要花费时间,而频繁的创建和销毁线程也需要花费额外的机器指令,同时在某些时候极少数线程可能就可以处理大量,比如http服务器可能只需要几个线程就可以处理用户发出的http请求,毕竟相对于用户需要长时间来阅读网页来说,CPU只是找到对应位置的页面返回即可。在这种情况下为每个用户连接创建一个线程长时间等待再次处理用户请求肯定是不划算的。为了解决这种问题,提出了线程池的概念,线程池中保存一定数量的 线程,当需要时,由线程池中的某一个线程来调用对应的处理函数。通过控制线程数量从而减少了CPU的线程切换,而且用完的线程还到线程池而不是销毁,下一次再用时直接从池中取,在某种程度上减少了线程创建与销毁的消耗,从而提高效率在Windows上,使用线程池十分简单,它将线程池做为一个整体,当需要使用池中的线程时,只需要定义对应的回调函数,然后调用API将回调函数进行提交,系统自带的线程池就会自动执行对应的回调函数。从而实现任务的执行,这种方式相对于传统的VC线程来说,程序员不再需要关注线程的创建与销毁,以及线程的调度问题,这些统一由系统完成,只需要将精力集中到逻辑处理的回调函数中来,这样将程序员从繁杂的线程控制中解放出来。同时Windows中线程池一般具有动态调整线程数量的自主行为,它会根据线程中执行任务的工作量来自动调整线程数,即不让大量线程处于闲置状态,也不会因为线程过少而有大量任务处于等待状态。在windows上主要有四种线程池普通线程池同步对象等待线程池定时器回调线程池完成端口回调线程池这些线程池最大的特点是需要提供一个由线程池中线程调用的回调函数,当条件满足时回调函数就会被线程池中的对应线程进行调用。从设计的角度来说,这样的设计大大简化了应用程序考虑多线程设计时的难度,此时只需要考虑回调函数中的处理逻辑和被调用的条件即可,而不必考虑线程的创建销毁等等问题(一些设计还可以绕开繁琐的同步处理)。需要注意的就是一般不要在这些回调函数中设计处理类似UI消息循环那样的循环,即不要长久占用线程池中的线程。下面来依次说明各种线程池的使用:普通线程池普通线程池在使用时主要是调用QueueUserWorkItem函数将回调函数加入线程池队列,线程池中一旦有空闲的线程就会调用这个回调,函数原型如下:BOOL WINAPI QueueUserWorkItem( __in LPTHREAD_START_ROUTINE Function, __in_opt PVOID Context, __in ULONG Flags );第一个参数是一个回调函数地址,函数原型与线程函数原型相同,所以在设计时可以考虑使用宏开关来指定这个回调函数作为线程函数还是作为线程池的回调函数第二个参数是传给回调函数的参数指针第三个参数是一个标志值,它的主要值及其含义如下:标志含义WT_EXECUTEDEFAULT线程池的默认标志WT_EXECUTEINIOTHREAD以IO可警告状态运行线程回调函数WT_EXECUTEINPERSISTENTTHREAD该线程将一直运行而不会终止WT_EXECUTELONGFUNCTION执行一个运行时间较长的任务(这会使系统考虑是否在线程池中创建新的线程)WT_TRANSFER_IMPERSONATION以当前的访问字串运行线程并调用回调函数下面是一个具体的例子:void CALLBACK ThreadProc(LPVOID lpParam); int _tmain(int argc, _TCHAR* argv[]) { int nWaitTime; while (TRUE) { printf("请输入线程等待事件:"); scanf_s("%d", &nWaitTime); printf("\n"); if (0 == nWaitTime) { break; } //将任务放入到队列中进行排队 QueueUserWorkItem((LPTHREAD_START_ROUTINE)ThreadProc, &nWaitTime, WT_EXECUTELONGFUNCTION); } //结束主线程 printf("主线程[%04x]\n", GetCurrentThreadId()); return 0; } void CALLBACK ThreadProc(LPVOID lpParam) { int nWaitTime = *(int*)lpParam; printf("线程[%04x]将等待%ds\n", GetCurrentThreadId(), nWaitTime); Sleep(nWaitTime * 1000); printf("线程[%04x]执行完毕\n", GetCurrentThreadId()); }这段代码上我们加入了WT_EXECUTELONGFUNCTION标识,其实在计算机中,只要达到毫秒级的,这个时候已经达到了系统进行线程切换的时间粒度,这个时候它就是一个需要长时间执行的任务定时器回调线程池定时器回调主要经过下面几步:调用CreateTimerQueue:创建定时器回调的队列调用CreateTimerQueueTimer创建一个指定时间周期的计时器对象,并指定对应的回调函数及参数之后当指定的时间片到达,就会将对应的回调历程放入到队列中,一旦线程池中有空闲的线程就执行它另外可以调用对应的函数对其进行相关的操作:可以调用ChangeTimerQueueTimer修改一个已有的计时器对象的计时周期调用DeleteTimerQueueTimer删除一个计时器对象调用DeleteTimerQueue删除这样一个线程池对象,在删除这个线程池的时候它上面绑定的回调也会被删除,所以在编码时可以直接删除线程池对象而不用调用DeleteTimerQueueTimer删除每一个绑定的计时器对象。但是为了编码的完整性,最好加上删除计时器对象的操作下面是一个使用的具体例子VOID CALLBACK TimerCallback(PVOID lpParameter, BOOLEAN TimerOrWaitFired); int _tmain(int argc, _TCHAR* argv[]) { HANDLE hTimeQueue = CreateTimerQueue(); HANDLE hEvent = CreateEvent(NULL, FALSE, FALSE, NULL); HANDLE hTimer; CreateTimerQueueTimer(&hTimer, hTimeQueue, (WAITORTIMERCALLBACK)TimerCallback, &hEvent, 10000, 0, WT_EXECUTEDEFAULT); //等待定时器历程被调用 WaitForSingleObject(hEvent, INFINITE); //关闭事件对象 CloseHandle(hEvent); //删除定时器与定时器线程池的绑定 DeleteTimerQueueTimer(hTimeQueue, hTimer, NULL); //删除定时器线程池 DeleteTimerQueue(hTimeQueue); return 0; } VOID CALLBACK TimerCallback(PVOID lpParameter, BOOLEAN TimerOrWaitFired) { HANDLE hEvent = *(HANDLE*)lpParameter; if (TimerOrWaitFired) { printf("定时器回调历程[%04x]被执行\n", GetCurrentThreadId()); } SetEvent(hEvent); }上述的代码中我们定义了一个同步事件对象,这个事件对象将在定时器历程中设置为有信号,这样方便我们在主线程中等待计时器历程执行完成同步对象等待线程池使用同步对象等待线程池只需要调用函数RegisterWaitForSingalObject,将一个同步对象绑定,当这个同步对象变为有信号或者等待的时间到达时,会调用对应的回调历程。该函数原型如下:BOOL WINAPI RegisterWaitForSingleObject( __out PHANDLE phNewWaitObject, __in HANDLE hObject, __in WAITORTIMERCALLBACK Callback, __in_opt PVOID Context, __in ULONG dwMilliseconds, __in ULONG dwFlags ); 第一个参数是一个输出参数,返回一个等待对象的句柄,我们可以将其看做这个线程池的句柄第二个参数是一个同步对象第三个参数是对应的回调函数第四个参数是传入到回调函数中的参数指针第五个参数是等待的时间第六个参数是一个标志与函数QueueUserWorkItem中的标识含义相同对应回调函数的原型如下:VOID CALLBACK WaitOrTimerCallback( __in PVOID lpParameter, __in BOOLEAN TimerOrWaitFired );当同步对象变为有信号或者等待的时间到达时都会调用这个回调,它的第二个参数就表示它所等待的对象是否为有信号。下面是一个使用的例子void WaitEventCallBackProc(PVOID lpParameter, BOOLEAN TimerOrWaitFired); int _tmain(int argc, _TCHAR* argv[]) { HANDLE hWait; HANDLE hEvent = CreateEvent(NULL, FALSE, FALSE, NULL); //注册等待同步对象的线程池 RegisterWaitForSingleObject(&hWait, hEvent, (WAITORTIMERCALLBACK)WaitEventCallBackProc, NULL, 5000, WT_EXECUTELONGFUNCTION); for(int i = 0; i < 5; i++) { SetEvent(hEvent); Sleep(5000); } UnregisterWaitEx(hWait, hEvent); CloseHandle(hEvent); CloseHandle(hWait); return 0; } void WaitEventCallBackProc(PVOID lpParameter, BOOLEAN TimerOrWaitFired) { if (TimerOrWaitFired) { printf("线程[%04x]等到事件对象\n"); }else { printf("线程[%04x]等待事件对象超时\n"); } }完成端口线程池在前面讲述文件操作的博文中,讲解了在文件中完成端口的使用,其实完成端口本质上就是一个线程池,或者说,windows上自带的线程池是使用完成端口的基础之上编写的。所以在这,完成端口线程池的使用将比IO完成端口来的简单通过调用BindIoCompletionCallback函数来将一个IO对象句柄与对应的完成历程绑定,这样在对应的IO操作完成后,对应的历程将会被丢到线程池中准备执行相比于前面的文件中的完成端口,这个完成端口线程池要简单许多,文件的完成端口需要自己创建完成多个线程,创建完成端口,并且将线程与完成端口绑定。另外还需要在线程中调用相应的等待函数等待IO操作完成,而线程池则不需要这些操作,我只需要准备一个完成历程,然后调用BindIoCompletionCallback,这样一旦历程被调用,就可以肯定IO操作一定完成了。这样我们只需要将主要精力集中在完成历程的编写中函数BindIoCompletionCallback的原型如下:BOOL WINAPI BindIoCompletionCallback( __in HANDLE FileHandle, __in LPOVERLAPPED_COMPLETION_ROUTINE Function, __in ULONG Flags );第一个参数是一个对应IO操作的句柄第二个参数是对应的完成历程函数指针第三个参数是一个标志,与之前的标识相同完成历程的函数原型如下:VOID CALLBACK FileIOCompletionRoutine( __in DWORD dwErrorCode, __in DWORD dwNumberOfBytesTransfered, __in LPOVERLAPPED lpOverlapped );第一个参数是一个错误码,当IO操作发生错误时可以通过这个参数获取当前错误原因第二个参数是当前IO操作操作的字节数第三个参数是一个OVERLAPPED结构这函数的使用与之前文件完成端口中完成历程一样下面我们将之前文件完成端口的例子进行改写,如下:typedef struct tagIOCP_OVERLAPPED { OVERLAPPED Overlapped; HANDLE hFile; //操作的文件句柄 DWORD dwDataLen; //当前操作数据的长度 LPVOID pData; //操作数据的指针 DWORD dwWrittenLen; //写入文件中的数据长度 }IOCP_OVERLAPPED, *LPIOCP_OVERLAPPED; #define MAX_WRITE_THREAD 20 //写线程总数 #define EVERY_THREAD_WRITTEN 100 //每个线程写入信息数 LARGE_INTEGER g_FilePointer; //全局的文件指针 void GetAppPath(LPTSTR lpAppPath) { TCHAR szExePath[MAX_PATH] = _T(""); GetModuleFileName(NULL, szExePath, MAX_PATH); size_t nPathLen = 0; StringCchLength(szExePath, MAX_PATH, &nPathLen); for (int i = nPathLen; i > 0; i--) { if (szExePath[i] == _T('\\')) { szExePath[i + 1] = _T('\0'); break; } } StringCchCopy(lpAppPath, MAX_PATH, szExePath); } VOID CALLBACK WriteThread(LPVOID lpParam); VOID CALLBACK FileIOCompletionRoutine(DWORD dwErrorCode, DWORD dwNumberOfBytesTransfered, LPOVERLAPPED lpOverlapped); int _tmain(int argc, _TCHAR* argv[]) { TCHAR szAppPath[MAX_PATH] = _T(""); GetAppPath(szAppPath); StringCchCat(szAppPath, MAX_PATH, _T("IocpLog.txt")); HANDLE hFile = CreateFile(szAppPath, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_FLAG_OVERLAPPED | FILE_ATTRIBUTE_NORMAL, NULL); if (hFile == INVALID_HANDLE_VALUE) { return 0; } //绑定IO完成端口 BindIoCompletionCallback(hFile, (LPOVERLAPPED_COMPLETION_ROUTINE)FileIOCompletionRoutine, 0); //往日志文件中写入Unicode前缀 LPIOCP_OVERLAPPED pIocpOverlapped = (LPIOCP_OVERLAPPED)HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(IOCP_OVERLAPPED)); pIocpOverlapped->dwDataLen = sizeof(WORD); pIocpOverlapped->hFile = hFile; WORD dwUnicode = MAKEWORD(0xff, 0xfe); //构造Unicode前缀 pIocpOverlapped->pData = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(WORD)); CopyMemory(pIocpOverlapped->pData, &dwUnicode, sizeof(WORD)); //偏移文件指针 pIocpOverlapped->Overlapped.Offset = g_FilePointer.LowPart; pIocpOverlapped->Overlapped.OffsetHigh = g_FilePointer.HighPart; g_FilePointer.QuadPart += pIocpOverlapped->dwDataLen; //写文件 WriteFile(hFile, pIocpOverlapped->pData, pIocpOverlapped->dwDataLen, &pIocpOverlapped->dwWrittenLen, &pIocpOverlapped->Overlapped); //创建线程进行写日志操作 HANDLE hWrittenThreads[MAX_WRITE_THREAD]; for (int i = 0; i < MAX_WRITE_THREAD; i++) { hWrittenThreads[i] = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)WriteThread, &hFile, 0, NULL); } //等待所有写线程执行完成 WaitForMultipleObjects(MAX_WRITE_THREAD, hWrittenThreads, TRUE, INFINITE); for (int i = 0; i < MAX_WRITE_THREAD; i++) { CloseHandle(hWrittenThreads[i]); } CloseHandle(hFile); return 0; } VOID CALLBACK FileIOCompletionRoutine(DWORD dwErrorCode, DWORD dwNumberOfBytesTransfered, LPOVERLAPPED lpOverlapped) { LPIOCP_OVERLAPPED pIOCPOverlapped = (LPIOCP_OVERLAPPED)lpOverlapped; //释放对应的内存空间 printf("线程[%04x]得到IO完成通知,写入长度%d\n", GetCurrentThreadId(), pIOCPOverlapped->dwDataLen); if (pIOCPOverlapped->pData != NULL) { HeapFree(GetProcessHeap(), 0, pIOCPOverlapped->pData); } if (NULL != pIOCPOverlapped) { HeapFree(GetProcessHeap(), 0, pIOCPOverlapped); pIOCPOverlapped = NULL; } } VOID CALLBACK WriteThread(LPVOID lpParam) { TCHAR szBuf[255] = _T("线程[%04x]模拟写入一条日志记录\r\n"); TCHAR szWrittenBuf[255] = _T(""); StringCchPrintf(szWrittenBuf, 255, szBuf, GetCurrentThreadId()); for (int i = 0; i < EVERY_THREAD_WRITTEN; i++) { LPIOCP_OVERLAPPED lpIocpOverlapped = (LPIOCP_OVERLAPPED)HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(IOCP_OVERLAPPED)); size_t dwBufLen = 0; StringCchLength(szWrittenBuf, 255, &dwBufLen); lpIocpOverlapped->dwDataLen = dwBufLen * sizeof(TCHAR); lpIocpOverlapped->pData = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, (dwBufLen + 1) * sizeof(TCHAR)); CopyMemory(lpIocpOverlapped->pData, szWrittenBuf, dwBufLen * sizeof(TCHAR)); lpIocpOverlapped->hFile = *(HANDLE*)lpParam; //同步文件指针 *((LONGLONG*)&(lpIocpOverlapped->Overlapped.Pointer)) = InterlockedCompareExchange64(&g_FilePointer.QuadPart, g_FilePointer.QuadPart + lpIocpOverlapped->dwDataLen, g_FilePointer.QuadPart); //写文件 WriteFile(lpIocpOverlapped->hFile, lpIocpOverlapped->pData, lpIocpOverlapped->dwDataLen, &lpIocpOverlapped->dwWrittenLen, &lpIocpOverlapped->Overlapped); } }
2017年08月08日
4 阅读
0 评论
0 点赞
2017-07-25
windows 纤程
纤程本质上也是线程,是多任务系统的一部分,纤程为一个线程准并行方式调用多个不同函数提供了一种可能,它本身可以作为一种轻量级的线程使用。它与线程在本质上没有区别,它也有上下文环境,纤程的上下文环境也是一组寄存器和调用堆栈。它是比线程更小的调度单位。注意一般我们认为线程是操作系统调用的最小单位,而纤程相比于线程来说更小,但是它是有程序员自己调用,而不由操作系统调用。系统在调度线程的时候会陷入到内核态,线程对象本身也是一种内核对象,而纤程完全是建立在用户层上,它不是内核对象也没有对象的句柄。通过纤程的机制实际就绕开了Windows的随机调度线程执行的行为,调度算法由应用程序自己实现,这对一些并行算法非常有意义。因为纤程和线程本质上的类同性,所以也要按照理解线程为函数调用器的方式来理解纤程。纤程的创建纤程的创建需要必须建立在线程的基础之上。在线程中调用函数ConvertThreadToFiber可以将一个线程转化为纤程(或者说将一个线程与纤程绑定,以后可以将该纤程看做主纤程)。其他的纤程函数必须在纤程中调用,也就是说,如果目前在线程中,需要调用ConverThreadToFiber将线程转化为纤程,才能调用对应的API。这个函数的原型如下:LPVOID WINAPI ConvertThreadToFiber( LPVOID lpParameter ); 这个函数传入一个参数,类似于CreateThread函数中的线程函数参数,如果我们在主纤程中需要使用到它,可以使用宏GetFiberData取得这个参数。在调用这个函数创建新纤程后,系统大概会给纤程分配200字节的栈空间,用来执行纤程函数,和保存纤程环境。这个环境由下面几个部分的内容组成:用户定义的值,这个值就是纤程回调函数中传入的参数新的结构化异常处理的链表头纤程内存栈的最高和最低地址,当线程转换为纤程的时候,这也是线程的内存栈。之前说过纤程栈是在建立在线程的基础之上,保留这两个值是为了当纤程还原为线程后,用来还原线程栈环境各种CPU寄存器环境,相当于线程的CONTENT,但是没有这个结构那么复杂,它只是保存了几个简单的寄存器的值。需要特别注意的一点是,它并没有保存对应浮点数寄存器FPU的值,所以在纤程中使用浮点数计算可能会出现未知错误。如果一定要计算浮点数,那么可以使用ConverThreadToFiberEx,在第二个参数的位置传入FIBER_FLAG_FLOAT_SWITCH值,表示将初始化并保存FPU。可以在主纤程中调用CreateFiber函数创建子纤程。该函数原型如下:LPVOID WINAPI CreateFiber( DWORD dwStackSize, LPFIBER_START_ROUTINE lpStartAddress, LPVOID lpParameter );第一个参数是纤程的堆栈大小,默认给0的话,它会根据实际需求创建对应大小的堆栈,纤程的堆栈是建立在线程的基础之上,我们可以这样理解,它是从线程的堆栈中隔离一块作为纤程的堆栈。本质上它的堆栈是放在线程的堆栈上。第二个参数是一个回调,与线程函数类似,这个函数是一个纤程函数。第三个参数是传递到回调函数中的参数。函数CreateFiber 和 ConvertThreadToFiber 函数都返回一个void* 的指针,用来唯一标识一个纤程,在这我们可以将它理解为纤程的HANDLE .纤程的删除当纤程结束时需要调用DeleteFiber来删除线程,类似于CloseHandle来结束对应的内核对象。如果是调用转化函数由线程转化而来,调用DeleteFiber相当于调用ExitThread来终止线程,所以对于这种情况,最好是将纤程转化为线程,然后再设计一套合理的线程退出机制。纤程的调度在任何一个纤程内部调用SwitchToFiber函数,将纤程的void*指针传入,即可切换到对应的纤程,该函数可以在任意几个纤程中进行切换,不管这些纤程是在一个线程中或者在不同的线程中。但是最好不要在不同线程中的纤程中进行切换,它可能会带来意想不到的情况,假设存在这样一种情况,线程A创建纤程FA,线程B创建纤程FB,当我们在系统运行线程A时将纤程从FA切换到FB,由于纤程的堆栈是建立在线程之上的,所以这个时候纤程B仍然使用线程A的堆栈,但是它应该使用的线程B的堆栈,这样可能会对线程A的堆栈造成一定的破坏。下面是纤使用的一个具体的例子:#define PRIMARY_FIBER 0 #define WRITE_FIBER 1 #define READ_FIBER 2 #define FIBER_COUNT 3 #define COPY_LENGTH 512 VOID CALLBACK ReadFiber(LPVOID lpParam); VOID CALLBACK WriteFiber(LPVOID lpParam); typedef struct _tagFIBER_STRUCT { DWORD dwFiberHandle; HANDLE hFile; LPVOID lpParam; }FIBER_STRUCT, *LPFIBER_STRUCT; char *g_lpBuffer = NULL; LPVOID g_lpFiber[FIBER_COUNT] = {}; void GetApp(LPTSTR lpPath, int nBufLen) { TCHAR szBuf[MAX_PATH] = _T(""); GetModuleFileName(NULL, szBuf, MAX_PATH); int nLen = _tcslen(szBuf); for(int i = nLen; i > 0; i--) { if(szBuf[i] == '\\') { szBuf[i + 1] = _T('\0'); break; } } nLen = _tcslen(szBuf) + 1; int nCopyLen = min(nLen, nBufLen); StringCchCopy(lpPath, nCopyLen, szBuf); } int _tmain(int argc, _TCHAR* argv[]) { g_lpBuffer = (char*)HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, COPY_LENGTH); FIBER_STRUCT fs[FIBER_COUNT] = {0}; TCHAR szDestPath[MAX_PATH] = _T(""); TCHAR szSrcPath[MAX_PATH] = _T(""); GetApp(szDestPath, MAX_PATH); GetApp(szSrcPath, MAX_PATH); StringCchCat(szSrcPath, MAX_PATH, _T("2.jpg")); StringCchCat(szDestPath, MAX_PATH, _T("2_Cpy.jpg")); HANDLE hSrcFile = CreateFile(szSrcPath, GENERIC_READ, 0, NULL, OPEN_EXISTING, 0, NULL); HANDLE hDestFile = CreateFile(szDestPath, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, 0, NULL); fs[PRIMARY_FIBER].hFile = INVALID_HANDLE_VALUE; fs[PRIMARY_FIBER].lpParam = NULL; fs[PRIMARY_FIBER].dwFiberHandle = 0x00001234; fs[WRITE_FIBER].hFile = hDestFile; fs[WRITE_FIBER].lpParam = NULL; fs[WRITE_FIBER].dwFiberHandle = 0x12345678; fs[READ_FIBER].hFile = hSrcFile; fs[READ_FIBER].dwFiberHandle = 0x78563412; fs[READ_FIBER].lpParam = NULL; g_lpFiber[PRIMARY_FIBER] = ConvertThreadToFiber(&fs[PRIMARY_FIBER]); g_lpFiber[READ_FIBER] = CreateFiber(0, (LPFIBER_START_ROUTINE)ReadFiber, &fs[READ_FIBER]); g_lpFiber[WRITE_FIBER] = CreateFiber(0, (LPFIBER_START_ROUTINE)WriteFiber, &fs[WRITE_FIBER]); //切换到读纤程 SwitchToFiber(g_lpFiber[READ_FIBER]); //删除纤程 DeleteFiber(g_lpFiber[WRITE_FIBER]); DeleteFiber(g_lpFiber[READ_FIBER]); CloseHandle(fs[READ_FIBER].hFile); CloseHandle(fs[WRITE_FIBER].hFile); //变回线程 ConvertFiberToThread(); return 0; } VOID CALLBACK ReadFiber(LPVOID lpParam) { //拷贝文件 while (TRUE) { LPFIBER_STRUCT pFS = (LPFIBER_STRUCT)lpParam; printf("切换到[%08x]纤程\n", pFS->dwFiberHandle); DWORD dwReadLen = 0; ZeroMemory(g_lpBuffer, COPY_LENGTH); ReadFile(pFS->hFile, g_lpBuffer, COPY_LENGTH, &dwReadLen, NULL); SwitchToFiber(g_lpFiber[WRITE_FIBER]); if(dwReadLen < COPY_LENGTH) { break; } } SwitchToFiber(g_lpFiber[PRIMARY_FIBER]); } VOID CALLBACK WriteFiber(LPVOID lpParam) { while (TRUE) { LPFIBER_STRUCT pFS = (LPFIBER_STRUCT)lpParam; printf("切换到[%08x]纤程\n", pFS->dwFiberHandle); DWORD dwWriteLen = 0; WriteFile(pFS->hFile, g_lpBuffer, COPY_LENGTH, &dwWriteLen, NULL); SwitchToFiber(g_lpFiber[READ_FIBER]); if(dwWriteLen < COPY_LENGTH) { break; } } SwitchToFiber(g_lpFiber[PRIMARY_FIBER]); } 上面这段代码中首先将主线程转化为主纤程,然后创建两个纤程,分别用来读文件和写文件,然后保存这三个纤程。并定义了一个结构体用来向各个纤程函数传入对应的参数。在主线程的后面首先切换到读纤程,在读纤程中利用源文件的句柄,读入512字节的内容,然后切换到写纤程,将读到的这些内容写回到磁盘的新文件中完成拷贝,然后切换到读纤程,这样不停的在读纤程和写纤程中进行切换,直到文件拷贝完毕。再切换回主纤程,最后在主纤程中删除读写纤程,将主纤程转化为线程并结束线程。
2017年07月25日
5 阅读
0 评论
0 点赞
2017-07-22
windows 下进程池的操作
在Windows上创建进程是一件很容易的事,但是在管理上就不那么方便了,主要体现在下面几个方面:各个进程的地址空间是独立的,想要在进程间共享资源比较麻烦进程间可能相互依赖,在进程间需要进行同步时比较麻烦在服务器上可能会出现一个进程创建一大堆进程来共同为客户服务,这组进程在逻辑上应该属于同一组进程为了方便的管理同组的进程,Windows上提供了一个进程池来管理这样一组进程,在VC中将这个进程池叫做作业对象。它主要用来限制池中内存的一些属性,比如占用内存数,占用CPU周期,进程间的优先级,同时提供了一个同时关闭池中所有进程的方法。下面来说明它的主要用法作业对象的创建调用函数CreateJobObject,可以来创建作业对象,该函数有两个参数,第一个参数是一个安全属性,第二个参数是一个对象名称。作业对象本身也是一个内核对象,所以它的使用与常规的内核对象相同,比如可以通过命名实现跨进程访问,可以通过对应的Open函数打开命名作业对象。添加进程到作业对象可以通过AssignProcessToJobObject ,该函数只有两个参数,第一个是对应的作业对象,第二个是对应的进程句柄关闭作业对象中的进程可以使用TerminateJobObject 函数来一次关闭作业对象中的所有进程,它相当于对作业对象中的每一个进程调用TerminateProcess,相对来说是一个比较粗暴的方式,在实际中应该劲量避免使用,应该自己设计一种更好的退出方式控制作业对象中进程的相关属性可以使用SetInformationJobObject函数设置作业对象中进程的相关属性,函数原型如下:BOOL WINAPI SetInformationJobObject( __in HANDLE hJob, __in JOBOBJECTINFOCLASS JobObjectInfoClass, __in LPVOID lpJobObjectInfo, __in DWORD cbJobObjectInfoLength );第一个参数是一个作业对象的句柄,第二个是一系列的枚举值,用来限制其中进程的各种信息。第三个参数根据第二参数的不同,需要传入对应的结构体,第四个参数是对应结构体的长度。下面是各个枚举值以及它对应的结构体枚举值含义对应的结构体JobObjectAssociateCompletionPortInformation设置各种作业对象事件的完成端口JOBOBJECT_ASSOCIATE_COMPLETION_PORTJobObjectBasicLimitInformation设置作业对象的基本信息(如:进程作业集大小,进程亲缘性,进程CPU时间限制值,同时活动的进程数量等)JOBOBJECT_BASIC_LIMIT_INFORMATIONJobObjectBasicUIRestrictions对作业中的进程UI进行基本限制(如:指定桌面,限制调用ExitWindows函数,限制剪切板读写操作等)一般在服务程序上这个很少使用JOBOBJECT_BASIC_UI_RESTRICTIONSJobObjectEndOfJobTimeInformation指定当作业时间限制到达时,系统采取什么动作(如:通知与作业对象绑定的完成端口一个超时事件等)JOBOBJECT_END_OF_JOB_TIME_INFORMATIONJobObjectExtendedLimitInformation作业进程的扩展限制信息(限制进程的内存使用量等)JOBOBJECT_EXTENDED_LIMIT_INFORMATIONJobObjectSecurityLimitInformation限制作业对象进程中的安全属性(如:关闭一些组的特权,关闭某些特权等)要求作业对象所属进程或线程要具备更改这些作业进程安全属性的权限JOBOBJECT_SECURITY_LIMIT_INFORMATION限制进程异常退出的行为在Windows中,如果进程发生异常,那么它会寻找处理该异常的对应的异常处理模块,如果没有找到的话,它会弹出一个对话框,让用户选择,但是这样对服务程序来说很不友好,而且有的服务器是在远程没办法操作这个对话框,这个时候需要使用某种方法让其不弹出这个对话框。在作业对象中的进程,我们可以使用SetInformationJobObject函数中的JobObjectExtendedLimitInformation枚举值,将结构体JOBOBJECT_EXTENDED_LIMIT_INFORMATION中的BasicLimitInformation.LimitFlags成员设置为JOB_OBJECT_LIMIT_DIE_ON_UNHANDLED_EXCEPTION。这相当于强制每个进程调用SetErrorMode并指定SEM_NOGPFAULTERRORBOX标志获取作业对象属性和统计信息调用QueryInformationJobObject函数来获取作业对象属性和统计信息。该函数的使用方法与之前的SetInformationJobObject函数相同。下面列举下它可选择枚举值:枚举值含义对应的结构体JobObjectBasicAccountingInformation基本统计信息JOBOBJECT_BASIC_ACCOUNTING_INFORMATIONJobObjectBasicAndIoAccountingInformation基本统计信息和IO统计信息JOBOBJECT_BASIC_AND_IO_ACCOUNTING_INFORMATIONJobObjectBasicLimitInformation基本的限制信息JOBOBJECT_BASIC_LIMIT_INFORMATIONJobObjectBasicProcessIdList获取作业进程ID列表JOBOBJECT_BASIC_PROCESS_ID_LISTJobObjectBasicUIRestrictions查询进程UI的限制信息JOBOBJECT_BASIC_UI_RESTRICTIONSJobObjectExtendedLimitInformation查询作业进程的扩展限制信息JOBOBJECT_EXTENDED_LIMIT_INFORMATIONJobObjectSecurityLimitInformation查询作业对象进程中的安全属性JOBOBJECT_SECURITY_LIMIT_INFORMATION这些信息基本上与上面的设置限制信息是对应的。使用上也是类似的作业对象与完成端口设置作业对象的完成端口一般是使用SetInformationJobObject,并将第二个参数的枚举值指定为JobObjectAssociateCompletionPortInformation,这样就可以完成一个作业对象和完成端口的绑定。当作业对象发生某些事件的时候可以向完成端口发送对应的事件,这个时候在完成端口的线程中调用GetQueuedCompletionStatus可以获取对应的事件,但是这个函数的使用与之前在文件操作中的使用略有不同,主要体现在它的各个返回参数的含义上。各个参数函数如下:lpNumberOfBytes:返回一个事件的ID,它的事件如下:事件事件含义JOB_OBJECT_MSG_ABNORMAL_EXIT_PROCESS进程异常退出JOB_OBJECT_MSG_ACTIVE_PROCESS_LIMIT同时活动的进程数达到设置的上限JOB_OBJECT_MSG_ACTIVE_PROCESS_ZERO作业对象中没有活动的进程了JOB_OBJECT_MSG_END_OF_JOB_TIME作业对象的CPU周期耗尽JOB_OBJECT_MSG_END_OF_PROCESS_TIME进程的CPU周期耗尽JOB_OBJECT_MSG_EXIT_PROCESS进程正常退出JOB_OBJECT_MSG_JOB_MEMORY_LIMIT作业对象消耗内存达到上限JOB_OBJECT_MSG_NEW_PROCESS有新进程加入到作业对象中JOB_OBJECT_MSG_PROCESS_MEMORY_LIMIT进程消耗内存数达到上限lpCompletionKey: 返回触发这个事件的对象的句柄,我们将完成端口与作业对象绑定后,这个值自然是对应作业对象的句柄lpOverlapped: 指定各个事件对应的详细信息,在于进程相关的事件中,它返回一个进程ID既然知道了各个参数的含义,我们可以使用PostQueuedCompletionStatus函数在对应的位置填充相关的值,然后往完成端口上发送自定义事件。只需要将lpNumberOfBytes设置为我们自己的事件ID,然后在线程中处理即可下面是作业对象操作的完整例子#include "stdafx.h" #include <Windows.h> DWORD IOCPThread(PVOID lpParam); //完成端口线程 int GetAppPath(LPTSTR pAppName, size_t nBufferSize) { TCHAR szAppName[MAX_PATH] = _T(""); DWORD dwLen = ::GetModuleFileName(NULL, szAppName, MAX_PATH); if(dwLen == 0) { return 0; } for(int i = dwLen; i > 0; i--) { if(szAppName[i] == _T('\\')) { szAppName[i + 1] = _T('\0'); break; } } _tcscpy_s(pAppName, nBufferSize, szAppName); return 0; } int _tmain(int argc, _TCHAR* argv[]) { //获取当前进程的路径 TCHAR szModulePath[MAX_PATH] = _T(""); GetAppPath(szModulePath, MAX_PATH); //创建作业对象 HANDLE hJob = CreateJobObject(NULL, NULL); if(hJob == INVALID_HANDLE_VALUE) { return 0; } //创建完成端口 HANDLE hIocp = CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, NULL, 1); if(hIocp == INVALID_HANDLE_VALUE) { return 0; } //启动监视进程 CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)IOCPThread, (PVOID)hIocp, 0, NULL); //将作业对象与完成端口绑定 JOBOBJECT_ASSOCIATE_COMPLETION_PORT jacp = {0}; jacp.CompletionKey = hJob; jacp.CompletionPort = hIocp; SetInformationJobObject(hJob, JobObjectAssociateCompletionPortInformation, &jacp, sizeof(jacp)); //为作业对象设置限制条件 JOBOBJECT_BASIC_LIMIT_INFORMATION jbli = {0}; jbli.PerProcessUserTimeLimit.QuadPart = 20 * 1000 * 10i64; //限制执行的用户时间为20ms jbli.MinimumWorkingSetSize = 4 * 1024; jbli.MaximumWorkingSetSize = 256 * 1024; //限制最大内存为256k jbli.LimitFlags = JOB_OBJECT_LIMIT_PROCESS_TIME | JOB_OBJECT_LIMIT_JOB_MEMORY; SetInformationJobObject(hJob, JobObjectBasicLimitInformation, &jbli, sizeof(jbli)); //指定不显示异常对话框 JOBOBJECT_EXTENDED_LIMIT_INFORMATION jeli = {0}; jeli.BasicLimitInformation.LimitFlags = JOB_OBJECT_LIMIT_DIE_ON_UNHANDLED_EXCEPTION; SetInformationJobObject(hJob, JobObjectExtendedLimitInformation, &jeli, sizeof(jeli)); //创建新进程 _tcscat_s(szModulePath, MAX_PATH, _T("JobProcess.exe")); STARTUPINFO si = {0}; PROCESS_INFORMATION pi = {0}; CreateProcess(szModulePath, NULL, NULL, NULL, FALSE, CREATE_SUSPENDED | CREATE_BREAKAWAY_FROM_JOB, NULL, NULL, &si, &pi); //将进程加入到作业对象中 AssignProcessToJobObject(hJob, pi.hProcess); //运行进程 ResumeThread(pi.hThread); //查询作业对象的运行情况,在这查询基本统计信息和IO信息 JOBOBJECT_BASIC_AND_IO_ACCOUNTING_INFORMATION jbaai = {0}; DWORD dwRetLen = 0; QueryInformationJobObject(hJob, JobObjectBasicAndIoAccountingInformation, &jbaai, sizeof(jbaai), &dwRetLen); //等待进程退出 WaitForSingleObject(pi.hProcess, INFINITE); CloseHandle(pi.hThread); CloseHandle(pi.hProcess); //给完成端口线程发送退出命令 PostQueuedCompletionStatus(hIocp, 0, (ULONG_PTR)hJob, NULL); //等待线程退出 WaitForSingleObject(hIocp, INFINITE); CloseHandle(hIocp); CloseHandle(hJob); return 0; } DWORD IOCPThread(PVOID lpParam) { BOOL bLoop = TRUE; HANDLE hIocp = (HANDLE)lpParam; DWORD dwReasonId = 0; HANDLE hJob = NULL; OVERLAPPED *lpOverlapped = {0}; while (bLoop) { BOOL bSuccess = GetQueuedCompletionStatus(hIocp, &dwReasonId, (PULONG_PTR)&hJob, &lpOverlapped, INFINITE); if(!bSuccess) { return 0; } switch (dwReasonId) { case JOB_OBJECT_MSG_ABNORMAL_EXIT_PROCESS: { //进程异常退出 DWORD dwProcessId = (DWORD)lpOverlapped; HANDLE hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE, dwProcessId); if(INVALID_HANDLE_VALUE != hProcess) { DWORD dwExit = 0; GetExitCodeProcess(hProcess, &dwExit); printf("进程[%08x]异常退出,退出码为[%04x]\n", dwProcessId, dwExit); } } break; case JOB_OBJECT_MSG_ACTIVE_PROCESS_LIMIT: { printf("同时活动的进程数达到上限\n"); } break; case JOB_OBJECT_MSG_ACTIVE_PROCESS_ZERO: { printf("没有活动的进程了\n"); } break; case JOB_OBJECT_MSG_END_OF_JOB_TIME: { printf("作业对象CPU时间周期耗尽\n"); } break; case JOB_OBJECT_MSG_END_OF_PROCESS_TIME: { DWORD dwProcessID = (DWORD)lpOverlapped; printf("进程[%04x]CPU时间周期耗尽\n", dwProcessID); } break; case JOB_OBJECT_MSG_EXIT_PROCESS: { DWORD dwProcessId = (DWORD)lpOverlapped; HANDLE hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE, dwProcessId); if(INVALID_HANDLE_VALUE != hProcess) { DWORD dwExit = 0; GetExitCodeProcess(hProcess, &dwExit); printf("进程[%08x]正常退出,退出码为[%04x]\n", dwProcessId, dwExit); } } break; case JOB_OBJECT_MSG_JOB_MEMORY_LIMIT: { printf("作业对象消耗内存数量达到上限\n"); } break; case JOB_OBJECT_MSG_NEW_PROCESS: { DWORD dwProcessID = (DWORD)lpOverlapped; printf("进程[ID:%u]加入作业对象[h:0x%08X]\n",dwProcessID,hJob); } break; case JOB_OBJECT_MSG_PROCESS_MEMORY_LIMIT: { DWORD dwProcessID = (DWORD)lpOverlapped; printf("进程[%04x]消耗内存数量达到上限\n",dwProcessID); } break; default: bLoop = FALSE; break; } } }在上面的例子中需要注意一点,在创建进程的时候我们给这个进程一个CREATE_BREAKAWAY_FROM_JOB标志,由于Windows在创建进程时,默认会将这个子进程丢到父进程所在进程池中,如果父进程属于某一个进程池,那么我们再将子进程放到其他进程池中,自然会导致失败,这个标志表示,新创建的子进程不属于任何一个进程池,这样在后面的操作才会成功
2017年07月22日
5 阅读
0 评论
0 点赞
2017-07-20
lxml SAX方式解析xml
python中lxml库是一个十分强大的xml解析库,最近在看《白帽子将web扫描》这本书的时候,里面提供了一种不同于以往的用法,因此在这将这个方法记录下来传统的lxml库的使用方法类似于下面这样:from lxml import etree tree = etree.HTML(html) #假定html是一个html文本字符串 tag_a = tree.xpath("//a")这是一种DOM的解析方法,它事先生成了一个一个dom树tree,然后在树中根据xpath字符串筛选出我们想要的元素,至于具体的用法就不再在这演示了,百度lxml可以搜到很多东西书中提供了一种类似于SAX模型的解析方法,但是又有些不同,SAX模型一般有一些固定的函数需要去重写,比如进入到标签中和退出标签等等。在这种情况下,我们只知道它进入到了标签开始位置,但是并不知道进入的是何种标签。书中的那个写法达到了一个很好的效果,它能做到为每一个标签定义一个对应的处理函数,比如刚进入到a标签,就会调用我们自己定义的处理这个事件的函数,并且可以获取它对应的属性的列表,废话不多说,直接上代码:from lxml import etree class HtmlParser: def __init__(self): #在函数中定义一些属性,比如解析出来的url或者希望保存的中间变量 parser = etree.HTMLParser(target=self, recover=True, encoding='utf-8') try: etree.fromstring(self._html, parser) except ValueError: pass def start(self, tag, attrbs): meth = getattr(self, "_handle_" + tag + "_tag_start") meth(tag, attrbs) def _handle_a_tag_start(self, tag, attrbs): #dosomething pass def end(tag): meth = getattr(self, "_handle_" + tag + "_tag_end") meth(tag, attrbs)在调用fromstring()将字符串转化为dom时每当进入一个标签开始位置将调用start函数,而当即将离开该标签时调用end函数,start函数传入标签名tag和标签的属性列表attrbs。在这两个函数中使用getattr函数获取类中对应名称的函数,这个函数名称以标签名作为唯一标识,如果有该函数则调用,这样根据不同函数的调用就知道到了哪个标签里面,针对不同的标签编写不同的处理代码即可。
2017年07月20日
7 阅读
0 评论
0 点赞
2017-07-20
ghost.py在代用JavaScript时的超时问题
在写爬虫的时候,关于JavaScript的解析问题,我在网上找到的一个解决方案是使用ghost.py这个模块,他是一个基于webkit封装的一个客户端,可以用来解析动态页面。它的使用非常简单,它从2.x版本开始,变化就有点大了,在这我主要是针对他的1.0版本。首先在GitHub上克隆它,然后在对应的文件中执行python setup.py install命令,这样就可以安装了,注意在这不要直接使用pip,使用pip会默认安装2.x版本。安装完成后,可以编写如下代码来加载一个网页:from ghost import Ghost gh = Ghost(display = True, wait_timeout = 60) page, res = gh.open(url) for item in res: print item.url这段代码可以打印在加载页面时,webkit向远程服务器请求了那些资源。对于AJAX请求来说,使用这个特性非常方便的就可以获取到对应的url它在里面提供了一些特定的方法用来处理页面的事件,比如鼠标单击某个标签时调用click,通过阅读它的源代码可以知道针对这些事件的处理,它调用的是JavaScript代码,比如说click事件,click事件的源码如下@client_utils_required @can_load_page def click(self, selector): """Click the targeted element. :param selector: A CSS3 selector to targeted element. """ if not self.exists(selector): raise Exception("Can't find element to click") return self.evaluate('GhostUtils.click("%s");' % selector)它上面的两个装饰器的代码分别如下:def can_load_page(func): """Decorator that specifies if user can expect page loading from this action. If expect_loading is set to True, ghost will wait for page_loaded event. """ @wraps(func) def wrapper(self, *args, **kwargs): expect_loading = False if 'expect_loading' in kwargs: expect_loading = kwargs['expect_loading'] del kwargs['expect_loading'] if expect_loading: self.loaded = False func(self, *args, **kwargs) return self.wait_for_page_loaded() return func(self, *args, **kwargs) return wrapper def client_utils_required(func): """Decorator that checks avabality of Ghost client side utils, injects require javascript file instead. """ @wraps(func) def wrapper(self, *args, **kwargs): if not self.global_exists('GhostUtils'): self.evaluate_js_file( os.path.join(os.path.dirname(__file__), 'utils.js')) return func(self, *args, **kwargs) return wrapper函数can_load_page是用来判断用户是否需要进行等待,等待的条件是页面加载完毕,在阅读它的源代码时可以知道,它自身给webkit注册了几个槽函数,一个用来处理页面开始加载的信息,一个用来处理页面加载结束的信息,在加载时将一个bool变量设置为true,加载结束时设置为false,另外在返回前调用等待函数,等待函数主要判断这个bool变量是否为false,为false则返回,否则就继续循环。这样当页面加载完毕后,就可以返回,同样的,这个can_load_page函数就是在执行JavaScript期间进行等待。直到页面加载完成后返回(当然,是否需要等待就看我们是否传入expect_load这个参数了,它默认是False,即不等待)client_utils_required函数主要负责读取utils.js这个文件中的JavaScript代码并执行它,这个文件中代码都是函数,在这所谓的执行只是为了将其加载到内存,准备随时调用。根据以上所说,大概能组织一下执行click函数时经历的步骤了:首先会调用client_utils_required函数,将对应的JavaScript函数代码加载起来,然后判断是否需要等待,如果需要等待将设置对应等待变量的值,然后真正调用对应的JavaScript函数来进行元素的点击,然后调用等待函数,如果需要等待,则会等待到新页面加载,否则直接返回,这样就完成了一个点击事件。根据这些我们扩展它的功能,从click函数的定义来看,它需要传入一个css选择器,但是我遇到的场景是我希望通过JavaScript得到的页面的dom元素,根据它的下标来进行点击,比如说document.getElementsByTagName("a")[3];我通过上面的代码获取到了这个元素,我现在要点击这个元素,自然不能直接调用click函数,ghost中也没有对应的函数可以使用,这个时候就需要我们进行扩展。当时我给出的代码入下:@client_utils_required @can_load_page def js_click(self, jscontent): #jscontent使用js来定位元素的代码 return self.evaluate('GhostUtils.jsclick("%s");' % jscontent);然后来扩展utils.js文件,在里面新加一个对应的函数jsclickjsclick: function(jscontent) { var elem = eval(jscontent); if (!elem) { return false; } var evt = document.createEvent("MouseEvents"); evt.initMouseEvent("click", true, true, window, 1, 1, 1, 1, 1, false, false, false, false, 0, elem); if (elem.dispatchEvent(evt)) { return true; } return false; }但是我在这发现,它可以调用成功的点击,但是超时率比较高,几乎达到了70%以上,这个问题一直使我困惑,后来我仔细阅读源代码后发现,问题出在expect_loading = True,也就是让其等待页面加载完毕。有很多页面都是使用AJAX技术的,它只是改变页面的状态而不会重新加载,这样自然那个等待函数不会返回,当时间一到自然也就超时了,但是如果不加这个参数,让他立即返回,那么我们就得不到请求的url,而在webkit中也没有办法判断一个JavaScript代码是否执行完毕,所以在这我采取了一个折中的方案,每次等待1s,所以将上面的jsclick函数改为:@client_utils_required def js_click(self, jscontent): #jscontent使用js来定位元素的代码 return self.main_frame.evaluateJavaScript('GhostUtils.jsclick("%s");' % jscontent); #执行js函数 for i in range(0, 100): time.sleep(0.01) Ghost._app.processEvents() #在等待的时候让QT的信号槽机制仍然运转这样可能会有一定的性能损失,但是目前我只能想到这个方案。
2017年07月20日
5 阅读
0 评论
0 点赞
2017-06-11
windows 下文件的高级操作
本文主要说明在Windows下操作文件的高级方法,比如直接读写磁盘,文件的异步操作,而文件普通的读写方式在网上可以找到一大堆资料,在这也就不再进行专门的说明。判断文件是否存在在Windows中并没有专门提供判断文件是否存在的API,替代的解决方案是使用函数GetFileAttributes,传入一个路径,如果文件不存在,函数会返回INVALID_FILE_ATTRIBUTES,这个时候一般就可以认为文件不存在。更严格一点的,可以在返回INVALID_FILE_ATTRIBUTES之后调用GetLastError函数,判断返回值是否为ERROR_FILE_NOT_FOUND或者ERROR_PATH_NOT_FOUND(这个值适用于判断目录)下面是它的实例代码BOOL IsFileExist(LPCTSTR pFilePath) { DWORD dwRet = GetFileAttributes(pFilePath); if(INVALID_FILE_ATTRIBUTES == dwRet) { dwRet = GetLastError(); if (ERROR_FILE_NOT_FOUND == dwRet || ERROR_PATH_NOT_FOUND == dwRet) { return FALSE; } } return TRUE; }文件查找和目录遍历这个操作主要使用到了下面几个API函数:FindFirstFile:建立一个指定搜索条件的搜索句柄,函数原型如下:HANDLE FindFirstFile( LPCTSTR lpFileName, LPWIN32_FIND_DATA lpFindFileData ); 第一个参数是一个搜索起始位置路劲的字符串,但是这个字符串的格式为“路径+特定文件的通配符”这样它会以这个路径作为起始路径,依次查找到目录中文件名符合通配符的文件,比如"c:\."会返回c盘下的所有文件,而"c:\"直接返回错误,"c:\a*.txt"会返回c盘中以a开头的txt文件FindNextFile:搜索符合条件的下一项,在循环中调用它的话,它会依次返回符合FindFirstFile要求的文件信息和所有子目录新消息FindClose:关闭搜索句柄FindFirstFile和FindNextFile返回的文件信息结构为WIN32_FIND_DATA,它的定义如下:typedef struct _WIN32_FIND_DATA { DWORD dwFileAttributes; //文件属性 FILETIME ftCreationTime; //创建时间 FILETIME ftLastAccessTime; //最后访问时间 FILETIME ftLastWriteTime; //最后修改时间 DWORD nFileSizeHigh; DWORD nFileSizeLow; //这两个值是一个64位的文件大小的高32位和低32位 DWORD dwOID; TCHAR cFileName[MAX_PATH]; //文件名称 } WIN32_FIND_DATA; 一般在遍历的时候首先判断文件属性,如果为FILE_ATTRIBUTE_DIRECTORY(是个目录),并且文件名称不为".",".."则递归调用遍历函数遍历它的子目录,但是一定要记得进行文件路径的拼接,如果不为目录,这个时候一般就是普通文件,这个时候可以选择进行打印(遍历文件目录)或者比较文件名称与需要查找的名称是否相同(查找文件)。下面是一个全盘搜索特定文件名的实例代码:void FindFileByPath(LPCTSTR pszSearchEntry, LPCTSTR pszFileName) { WIN32_FIND_DATA fd = {0}; TCHAR szFilePath[MAX_PATH] = _T(""); StringCchCat(szFilePath, MAX_PATH, pszSearchEntry); StringCchCat(szFilePath, MAX_PATH, _T("*.*")); HANDLE hSearch = FindFirstFile(szFilePath, &fd); if (INVALID_HANDLE_VALUE == hSearch) { return; } do { if ((fd.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) && _tcscmp(fd.cFileName, _T(".")) != 0 && _tcscmp(fd.cFileName, _T("..")) != 0) { TCHAR szSubDir[MAX_PATH] = _T(""); StringCchCat(szSubDir, MAX_PATH, pszSearchEntry); StringCchCat(szSubDir, MAX_PATH, fd.cFileName); StringCchCat(szSubDir, MAX_PATH, _T("\\")); FindFileByPath(szSubDir, pszFileName); }else { if (_tcscmp(fd.cFileName, pszFileName) == 0) { TCHAR szFullPath[MAX_PATH] = _T(""); StringCchCat(szFullPath, MAX_PATH, pszSearchEntry); StringCchCat(szFullPath, MAX_PATH, _T("\\")); StringCchCat(szFullPath, MAX_PATH, fd.cFileName); printf("full path:%ws\n", szFullPath); return; } } ZeroMemory(&fd, sizeof(fd)); } while (FindNextFile(hSearch, &fd)); } void FindFile(LPCTSTR pFileName) { TCHAR szVolumn[MAX_PATH] = _T(""); GetLogicalDriveStrings(MAX_PATH, szVolumn); LPCTSTR pVolumnName = szVolumn; while (_tcscmp(pVolumnName, _T("")) != 0) { FindFileByPath(pVolumnName, pFileName); //偏移到下一个盘符的字符串位置 size_t nLen = 0; StringCchLength(pVolumnName, MAX_PATH, &nLen); nLen++; pVolumnName += nLen; } }由于这段代码会遍历整个磁盘,查找所有具有相同文件名称的文件,所以当某个逻辑分区的文件结构比较复杂的时候,可能执行效果比较慢。这段代码出现了两个函数,第一个函数是真正遍历文件的函数,由于FindFirst函数需要传入一个入口点,所以在需要进行全盘遍历的时候提供了另外一个函数来获取所有磁盘的逻辑分区名。获取所有逻辑分区名调用函数GetLogicalDriveStrings,这个函数会返回一个含有所有分区名称的字符串,每个分区名称之间以"\0"分割,所以在获取所有名称的时候需要自己进行字符串指针的偏移操作在遍历的时候为了要遍历所有文件及目录搜索的统配符应该匹配所有文件名称。另外FindFirst也会返回一个文件信息的结构,这个结构是当前目录中符合条件的第一个文件信息,在遍历的时候不要忘记也取一下它返回的文件信息。最后当文件为目录的时候需要判断它是否为当前目录或者当前目录的父目录,也就是是否为"."和"..",这段代码有一点不足就是不支持通配符,必须输入文件名的全称目录变更监视一般像notepad++等文本编辑器都会提供一个功能,就是在它们打开了一个文本之后,如果文本被其他程序更改,那么它们会提示用户是否需要重新载入,这个功能的实现需要对文件进行监控,windows中提供了一套API用于监控目录变更使用函数FindFirstChangeNotification创建一个监控句柄,该函数原型如下:HANDLE FindFirstChangeNotification( LPCTSTR lpPathName, BOOL bWatchSubtree, DWORD dwNotifyFilter);第一个参数是一个目录的字符串,表示将要监控哪个目录,注意这里必须穿入一个目录,不能穿文件路径第二个参数是一个bool类型,表示是否监控目录中的整个目录树第三个参数是监控的时间类型,如果要监控目录中的文件的改动,可以使用FILE_NOTIFY_CHANGE_LAST_WRITE 标记,该标记会监控文件的最后一次写入,其他类型请查阅MSDN创建监控句柄后使用Wait函数循环等待监控句柄,如果目录中发生对应的事件,wait函数返回,这个时候可以对比上次目录结构得出哪个文件被修改,做相应的处理后调用FindNextChangeNotification函数传入监控句柄,继续监控下一次变更。最后当我们不需要进行监控的时候调用FindCloseChangeNotification关闭监控句柄void WatchDirectoryChange(LPCTSTR lpDir) { HANDLE hChangNotify = FindFirstChangeNotification(lpDir, FALSE, FILE_NOTIFY_CHANGE_LAST_WRITE ); if (hChangNotify == INVALID_HANDLE_VALUE) { printf("FindFirstChangeNotification function faild!\n"); return ExitProcess(GetLastError()); } while (TRUE) { printf("wait for change notify.......\n"); if(WAIT_OBJECT_0 == WaitForSingleObject(hChangNotify, INFINITE)) { printf("some file be changed in this directory\n"); } FindNextChangeNotification(hChangNotify); } FindCloseChangeNotification(hChangNotify); }如果嫌这个方法比较麻烦的话,为了实现这个功能,Windows专门提供了一个函数ReadDirectoryChangesW,就跟他的名字一样他只能用于UNICODE平台,这个函数不存在ANSI版本,所以在ANSI版本时需要进行字符串的转化操作。函数原型如下:BOOL WINAPI ReadDirectoryChangesW( __in HANDLE hDirectory, //需要监控的目录的句柄,这个句柄可以用CreateFile打开 __out LPVOID lpBuffer, //函数返回信息的缓冲 __in DWORD nBufferLength, //缓冲区的长度 __in BOOL bWatchSubtree, //是否监控它的子目录 __in DWORD dwNotifyFilter, //监控的事件 __out_opt LPDWORD lpBytesReturned, //实际返回数据长度 __inout_opt LPOVERLAPPED lpOverlapped, //异步调用时的OVERLAPPED结构 __in_opt LPOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine //异步调用时的APC函数);这个函数它的原理就类似于上面的三个函数,如果是同步操作,当需要监控的目录发生指定的事件时函数返回,并将监控得到的信息填充到结构体中,它会将数据以FILE_NOTIFY_INFORMATION结构的形式返回。该结构的定义如下:typedef struct _FILE_NOTIFY_INFORMATION { DWORD NextEntryOffset; DWORD Action; DWORD FileNameLength; WCHAR FileName[1]; } FILE_NOTIFY_INFORMATION, *PFILE_NOTIFY_INFORMATION;这个结构体中存储文件名称的成员为FileName,这个成员只是起到一个变量名称标识的作用,在存储文件名称时用到了越界访问的方式,所以定义缓冲的大小一定要大于这个结构,让其有足够的空间容纳FileName这个字符串。结构体中的Action表示当前发生了何种操作,具体的类型可以参考MSDN,它的意思根据字面的单词很容易理解下面是使用它的具体代码:void WatchFileChange(LPCTSTR lpFilePath) { DWORD cbBytes; char notify[1024]; HANDLE dirHandle = CreateFile(lpFilePath,GENERIC_READ | GENERIC_WRITE | FILE_LIST_DIRECTORY, FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, FILE_FLAG_BACKUP_SEMANTICS, NULL); if(dirHandle == INVALID_HANDLE_VALUE) //若网络重定向或目标文件系统不支持该操作,函数失败,同时调用GetLastError()返回ERROR_INVALID_FUNCTION { cout<<"error"+GetLastError()<<endl; } memset(notify,0,strlen(notify)); FILE_NOTIFY_INFORMATION *pnotify = (FILE_NOTIFY_INFORMATION*)notify; cout<<"start...."<<endl; while(true) { if(ReadDirectoryChangesW(dirHandle,¬ify,1024,true, FILE_NOTIFY_CHANGE_FILE_NAME | FILE_NOTIFY_CHANGE_DIR_NAME | FILE_NOTIFY_CHANGE_SIZE, &cbBytes,NULL,NULL)) { //设置类型过滤器,监听文件创建、更改、删除、重命名等 switch(pnotify->Action) { case FILE_ACTION_ADDED: _tprintf(_T("add file: %s\n"), pnotify->FileName); break; case FILE_ACTION_MODIFIED: _tprintf(_T("modify file:%s\n"), pnotify->FileName); break; case FILE_ACTION_REMOVED: _tprintf(_T("file removed %s\n"), pnotify->FileName); break; case FILE_ACTION_RENAMED_OLD_NAME: _tprintf(_T("file renamed:%s\n"), pnotify->FileName); break; default: cout<<"unknow command!"<<endl; } } } CloseHandle(dirHandle); }这段代码很容易理解,但是需要注意几点:之前说过的分配的缓冲一定要大于FILE_NOTIFY_INFORMATION 结构这个函数也是用来监控目录的,所以这里要传入一个目录路径,不能传入文件路径在使用CreateFile来打开目录的时候这个函数要求传入的文件句柄必须要以FILE_LIST_DIRECTORY标识打开,否则在调用的时候会报“参数错误”这个错文件映射Windows中,文件映射是文件内容到进程的虚拟地址空间的映射,这个映射称之为File Mapping,文件内容的拷贝就是文件视图(File View),从内存管理的角度来看,文件映射只是将磁盘的真实地址通过页表映射到进程的虚拟地址空间中,读写这段虚拟地址空间其实就是在读写磁盘。而文件视图就是将文件中的内容整个读到内存中,并将这段虚拟地址空间与真实物理内存对应。最终在关闭整个文件映射的时候如果存在文件视图,操作系统会将视图中的内容写会到磁盘,其实也就是简单的进行了下物理内存到磁盘的页面交换,从内存管理的角度来看,文件映射其实就是操作系统将磁盘上的数据与物理内存之间的页面交换,操作系统在二者之间来回倒腾数据而已文件映射本身是一个内核对象,操作系统在内核中维护了一个相关的数据结构,这个结构中记录了被映射到虚拟地址空间中的起始地址和被映射的数据的大小。由于内核对象的数据结构是在内核中被维护,而内核被所有进程共享,所以从理论上将不同的进程是可以共享同一个内核对象的,虽然它们的对象句柄会在不同进程中呈现不同的值,但是在内核中,却是指向同一个结构,那么虽然不同进程的文件映射对象不同,但是通过寻址得到的物理内存肯定是同一个,所以这就提供了另一种进程间共享内存的方法——文件映射。创建文件映射主要使用函数CreateFileMapping,这个函数第一个参数是一个文件句柄,这个句柄可以是一个真实存在在磁盘上的文件,这样创建的文件映射最终就是将磁盘中的数据映射到进程的虚拟地址空间,也可以传入一个INVALID_HANDLE_VALUE,这个时候也会返回成功,传入INVALID_HANDLE_VALUE一般是用来在进程间共享内存的。注意:这个函数只是创建了一个内核对象并返回它的句柄,并没有进行内存映射的相关操作。同时由于它第一个句柄参数可以填INVALID_HANDLE_VALUE,在使用CreateFile函数后一定要注意校验,不然可能看到CreateFileMapping函数返回的是一个有效句柄,但是并没有成功创建这个文件的映射然后调用MappingViewOfFile函数,将对应文件与一段进程的虚拟地址空间关联并将文件映射到内存,也就是将磁盘文件中的数据交换到物理内存中当我们不使用这块真实内存的时候,调用UnMapViewOfFile将内存中的数据交换到磁盘,最终使用文件映射完毕后,调用CloseHandle关闭所有句柄使用文件映射一般有几个好处:针对文件来说,文件映射本质上是磁盘到物理内存之间的页面交换,由操作系统的内存管理机制统一调度,效率比一般的文件读写要高,而且在使用完毕后,操作系统会自动的将内存中的数据写到磁盘中,不用手动的更新文件针对不同进程来说,使用文件映射来共享内存本质上是在使用同样一块内存,相比于管道油槽等方式传输数据来说显得更为高效下面通过几个例子来说明在这两种情况下使用文件映射void GetFileNameByHandle(HANDLE hFile) { HANDLE hMapping = CreateFileMapping(hFile, NULL, PAGE_READONLY, 0, 0, NULL); if (INVALID_HANDLE_VALUE == hMapping) { _tprintf(_T("create file mapping error\n")); return; } LPVOID lpMappingMemeory = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 1); if (NULL == lpMappingMemeory) { _tprintf(_T("MapViewOfFile error\n")); return; } TCHAR szFileName[MAX_PATH] = _T(""); if(0 == GetMappedFileName(GetCurrentProcess(), lpMappingMemeory, szFileName, MAX_PATH)) { _tprintf(_T("GetMappedFileName error\n")); return; } TCHAR szTemp[MAX_PATH] = _T(""); GetLogicalDriveStrings(MAX_PATH, szTemp); TCHAR szDriver[4] = _T(" :"); LPCTSTR p = szTemp; while (*p != _T('\0')) { *szDriver = *p; TCHAR szName[MAX_PATH] = _T(""); QueryDosDevice(szDriver, szName, MAX_PATH); size_t nPathLen = 0; StringCchLength(szName, MAX_PATH, &nPathLen); if(CSTR_EQUAL == CompareString(LOCALE_USER_DEFAULT, NORM_IGNORECASE, szName, nPathLen, szFileName, nPathLen)) { TCHAR szFullPath[MAX_PATH] = _T(""); StringCchCopy(szFullPath, MAX_PATH, p); //在这使用文件带卷名的字符串首地址 + 卷名长度 + 1(+1是为了偏移到卷名后面的"\"的下一个字符,因为这个盘符中自己带了"/"字符) StringCchCat(szFullPath, MAX_PATH, szFileName + nPathLen + 1); _tprintf(_T("文件全路径:%s"), szFullPath); break; } size_t dwLen = 0; StringCchLength(p, MAX_PATH, &dwLen); p = p + dwLen + 1; } UnmapViewOfFile(lpMappingMemeory); CloseHandle(hMapping); return; }该函数利用文件映射的方式,通过一个文件的句柄获取它的绝对路径。该函数首先根据文件句柄创建一个文件映射并调用GetMappedFileName获取文件的全路径,但是获取到的是类似于“\Device\HarddiskVolume6\Program\FileDemo\FileMapping\FileMapping.cpp”这样的卷名加上文件的相对路径,而不是我们常见的类似于C D E这样的盘符名称,所以为了获取对应的盘符,使用的方式是利用GetLogicalDriverString函数来获取系统所有逻辑卷的盘符,然后调用QueryDosDevice函数将盘符转化为卷名,再与之前获取到的路径中的卷名进行比较,在这使用了一个技巧,就是首先获取卷名对应的长度,然后调用比较函数时传入卷名的长度让其只比较卷名对应的字符,如果相同,就找到了卷名对应的盘符名称,最后将卷名与在卷中的相对路径进行拼接就得到了它的文件全路径。下面来看一个使用文件映射在不同进程间共享内存的例子//Process A #define BUFF_SIZE 1024 int _tmain(int argc, _TCHAR* argv[]) { TCHAR szHandleName[] = _T("Global\\ShareMemMapping"); HANDLE hMapping = CreateFileMapping(INVALID_HANDLE_VALUE, NULL, PAGE_READWRITE, 0, BUFF_SIZE, szHandleName); if (INVALID_HANDLE_VALUE == hMapping) { printf("create file mapping error\n"); return GetLastError(); } LPVOID pMem = MapViewOfFile(hMapping, FILE_MAP_ALL_ACCESS, 0, 0, BUFF_SIZE); if (NULL == pMem) { printf("MapViewOfFile Error\n"); return GetLastError(); } ZeroMemory(pMem, BUFF_SIZE); TCHAR pszData[] = _T("this is written by process A"); CopyMemory(pMem, pszData, sizeof(pszData)); _tsystem(_T("PAUSE")); UnmapViewOfFile(pMem); CloseHandle(hMapping); return 0; }#define BUFF_SIZE 1024 int _tmain(int argc, _TCHAR* argv[]) { TCHAR szHandleName[] = _T("Global\\ShareMemMapping"); HANDLE hMapping = OpenFileMapping(FILE_MAP_ALL_ACCESS, FALSE, szHandleName); if (INVALID_HANDLE_VALUE == hMapping) { printf("OpenFileMapping"); return GetLastError(); } LPCTSTR pMem = (LPCTSTR)MapViewOfFile(hMapping, FILE_MAP_ALL_ACCESS, 0, 0, BUFF_SIZE); if (NULL == pMem) { printf("MapViewOfFile Error\n"); return GetLastError(); } printf("read date: %ws\n", pMem); _tsystem(_T("PAUSE")); UnmapViewOfFile(pMem); CloseHandle(hMapping); return 0; } 在上面的例子中,进程A做了如下工作:创建一个命名的文件映射对象构建文件映射的视口,并写入一段内存等待关闭相关句柄在进程B中做了如下工作:打开之前A创建的文件映射对象构建文件映射的视口,读取内存关闭相关句柄在使用文件映射共享内存时需要注意:使用命名对象的时候,对象前面必须要加上“Global//”表示该对象是一个全局的对象不同进程在使用文件映射共享内存时调用函数MapViewOfFile填写内存的起始偏移,视口大小必须完全一样这个例子中只是简单的一个进程写,另一个进程读,如果想要两个进程同时读写共享内存,可以使用Event等方式进行同步。直接读写磁盘扇区CreateFile可以打开许多设备,一般来说,它可以打开所有的字符设备,向串口,管道,油槽等等,在编写某些硬件的驱动程序时如果将其以字符设备的方式来操作,那么理论上在应用层是可以用CreateFile打开这个硬件设备的句柄,并操作它的,这里介绍下如何使用CreateFile来直接读取物理磁盘。读写物理磁盘只需要改变一下CreateFile中代表文件名称的第一个参数,将这个参数改为\.\PhysicalDrive0,后面的数字代表的是第几块物理硬盘,如果有多块硬盘,后面还可以是1、2等等注意这是在直接读写物理磁盘,当你不了解文件系统的时候,不要随意往里面写数据,以免造成磁盘损坏下面是一个简单的例子 DWORD dwSectorsPerCluster = 0; DWORD dwBytesPerSector = 0; DWORD dwNumberOfFreeClusters = 0; DWORD dwTotalNumberOfClusters = 0; TCHAR pDiskName[] = _T("\\\\.\\PhysicalDrive0"); //get disk info if(GetDiskFreeSpace(_T("c:\\"), &dwSectorsPerCluster, &dwBytesPerSector, &dwNumberOfFreeClusters, &dwTotalNumberOfClusters)) { printf("磁盘信息:\n"); LARGE_INTEGER size_disk = {0}; size_disk.QuadPart = (LONGLONG)dwTotalNumberOfClusters * (LONGLONG)dwSectorsPerCluster * (LONGLONG)dwBytesPerSector; printf("\t总大小 %dG", size_disk.QuadPart / (1024 * 1024 * 1024)); printf("\t簇总数%d, 簇中扇区总数:%d, 扇区大小:%d\n", dwTotalNumberOfClusters, dwSectorsPerCluster, dwBytesPerSector); } else { dwBytesPerSector = 512; } HANDLE hDisk = CreateFile(pDiskName,GENERIC_READ,FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,NULL,OPEN_EXISTING,0,NULL); if(hDisk == INVALID_HANDLE_VALUE) { printf("create file error\n"); return GetLastError(); } char* pMem = (char*)HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, dwBytesPerSector * 8); DWORD dwRead = 0; if(!ReadFile(hDisk, pMem, dwBytesPerSector * 8, &dwRead, NULL)) { printf("read file error\n"); return GetLastError(); } for(int i = 0; i < dwBytesPerSector * 8; i++) { if(i % 16 == 0 && i != 0) { printf("\n"); } printf("0x%02x ", pMem[i]); } CloseHandle(hDisk);上面的例子调用了GetDiskFreeSpace函数获取了逻辑卷的相关信息,它需要传入一个盘符,表示要获取哪个盘的数据,它会通过输出参数返回多个逻辑卷的信息,它们分别是:每个簇有多少个扇区,每个扇区的大小,有多少个空闲的簇,卷中簇的个数。根据这些信息就可以计算出逻辑卷的大小哦,在计算的时候由于磁盘空间一定是大于4G的,所以在这要用64位整数保存。知道了扇区大小后,直接调用文件操作函数,读取8个扇区的数据,然后输出。文件的异步操作在常规文件读写方式中,是严格串行化的,只有当读写操作完全完成时才会返回,由于磁盘读写相对于CPU的运行效率来说实在是太慢的,这就造成了程序长时间处理等待状态,这种读写方式称之为阻塞方式,早期的磁盘在进行读写时是需要CPU来控制,这样CPU必须来配合慢速的硬盘,造成了效率低下,于是硬件工程师在在磁盘中加入了一个控制设备,专门用来控制磁盘的读写,这个设备被称之为DMA,由于DMA的存在,使得CPU从漫长的磁盘操作中解放出来,一般在进行磁盘读写时,CPU主要向DMA发出一个读写命令,然后就继续执行后面的工作,当读写完成后DMA向CPU发出完成的指令,这个时候CPU会停下手上的工作,来处理这个通知,程序此时会陷入中断,直到CPU完成对应的操作。由于DMA的出现使得CPU从慢速的磁盘操作中解放出来,但是在同步的读写方式中,CPU发出磁盘的读写指令后什么都不做,一直等待磁盘的读写玩成,使CPU长时间陷入等待状态,浪费了宝贵的CPU的资源。所以为了程序效率,在读写磁盘时一般使用异步的方式,在发出读写命令后立即返回,然后执行后面的操作,这样就在一定程度上利用了闲置的CPU资源。重叠IO在Windows中默认使用同步的方式进行读写操作,如果要使用异步的方式,在创建文件句柄的时候,需要在CreateFile函数的dwFlagsAndAttributes参数中加上FILE_FLAG_OVERLAPPED标识,然后可以设置一个完成函数,并在对应线程中调用waitex函数或者使用SleepEx函数使线程陷入可警告状态,当读写操作完成时会将完成函数插入线程的APC队列,当线程进入可警告状态的时候会调用APC函数,这样就可以知道读写操作已经完成。这是一种方式,还可以使用一个OVERLAPPED结构,并给这个结构中填上一个事件对象,在需要进行同步的地方等待这个事件对象,在磁盘操作完成的时候会将其设置为有信号,上面的两种方式都利用的Windows提供的重叠IO模型不管使用哪种方式,在进行文件的异步操作时都需要自己维护并偏移文件指针。在同步的方式时Windows是完成之后返回,它一次只会写入一条数据到磁盘,而且它也知道具体写入了多少数据,这时候系统帮助我们完成了文件指针的偏移,但是在进行异步操作的时候可能会同时有多条数据写入,并且系统不知道具体会成功写入多少数据,所以它不可能帮我们进行文件指针的偏移,这个时候就需要自己进行偏移操作完成函数使用完成函数主要需要如下步骤:调用CreateFile在dwFlagsAndAttributes参数中加上FILE_FLAG_OVERLAPPED标识表示我们需要使用异步的方式来进行磁盘操作准备一个完成函数,函数的原型为:VOID CALLBACK FileIOCompletionRoutine(DWORD dwErrorCode,DWORD dwNumberOfBytesTransfered,LPOVERLAPPED lpOverlapped);函数的最后一个参数是一个OVERLAPPED结构,该结构的定义如下:typedef struct _OVERLAPPED { ULONG_PTR Internal; ULONG_PTR InternalHigh; union { struct { DWORD Offset; DWORD OffsetHigh; }; PVOID Pointer; }; HANDLE hEvent; } OVERLAPPED, *LPOVERLAPPED;这个结构中有一个共用体,其实这个共用体都可以用来操作文件指针,如果用其中的结构体,那么需要分别给其中的高32位和低32位赋值,如果使用指针,这个时候指针变量不指向任何内存,这个指针变量仅仅是作为一个变量名罢了,使用时也是将其作为正常变量来使用,虽然它是一个指针占4个字节,但是由于是一个共用体,它后面还有4个字节的剩余空间可以使用,所以使用它来存储文件指针的偏移没有任何问题。调用ReadFileEx或者WriteFileEx函数(ReadFile WriteFile不支持完成函数的方式)并将完成函数作为最后一个参数传入调用WaitEx族的等待函数或者SleepEx函数使线程陷入可警告状态,这个时候会执行完成函数下面是一个演示的例子LARGE_INTEGER g_FilePointer = {0}; //全局的文件指针 struct ST_EXT_OVERLAPPED { OVERLAPPED m_ol; //后面的代码在使用的时候后 HANDLE m_hFile; //操作的文件句柄 LPVOID m_pData; //操作的内存 DWORD m_dwLen; //操作的数据长度 }; VOID CALLBACK FileIOCompletionRoutine(DWORD dwErrorCode,DWORD dwNumberOfBytesTransfered,LPOVERLAPPED lpOverlapped) { ST_EXT_OVERLAPPED* pExOl = (ST_EXT_OVERLAPPED*)lpOverlapped; printf("线程[%04x]完成写入操作\n", GetCurrentThreadId()); HeapFree(GetProcessHeap(), 0, pExOl->m_pData); HeapFree(GetProcessHeap(), 0, pExOl); pExOl = NULL; } DWORD WriteThreadProc(LPVOID lpParameter) { HANDLE hFile = *(HANDLE*)(lpParameter); ST_EXT_OVERLAPPED* pExOl = NULL; TCHAR szBuf[256] = _T(""); StringCchPrintf(szBuf, 256, _T("这是一条模拟日志写入信息,由线程[%04x]写入\r\n"), GetCurrentThreadId()); size_t dwLen = 0; StringCchLength(szBuf, 256, &dwLen); dwLen += 1; //保存字符串结尾的\0 for (int i = 0; i < 100; i++) { pExOl = (ST_EXT_OVERLAPPED*)HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(ST_EXT_OVERLAPPED)); pExOl->m_dwLen = dwLen * sizeof(TCHAR); pExOl->m_pData = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, dwLen * sizeof(TCHAR)); StringCchCopy((TCHAR*)pExOl->m_pData, 256, szBuf); pExOl->m_hFile = hFile; //使用锁无关的方式进行同步操作 *((LONGLONG*)&pExOl->m_ol.Pointer) = InterlockedCompareExchange64(&g_FilePointer.QuadPart, g_FilePointer.QuadPart + pExOl->m_dwLen, g_FilePointer.QuadPart); WriteFileEx(pExOl->m_hFile, pExOl->m_pData, pExOl->m_dwLen, (OVERLAPPED*)&pExOl->m_ol, FileIOCompletionRoutine); //do something if(WAIT_IO_COMPLETION == SleepEx(INFINITE, TRUE)) { } } return 0; } int _tmain(int argc, _TCHAR* argv[]) { HANDLE hFile = CreateFile(_T("log.txt"), GENERIC_ALL, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED, NULL);//让其支持异步操作 if (hFile == INVALID_HANDLE_VALUE) { printf("CreateFile error\n"); return GetLastError(); } ST_EXT_OVERLAPPED* pExOl = (ST_EXT_OVERLAPPED*)HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(ST_EXT_OVERLAPPED)); pExOl->m_hFile = hFile; pExOl->m_dwLen = sizeof(WORD); pExOl->m_pData = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(WORD)); *((WORD*)pExOl->m_pData) = MAKEWORD(0xff,0xfe); //文件指针的偏移 pExOl->m_ol.Offset = g_FilePointer.LowPart; pExOl->m_ol.OffsetHigh = g_FilePointer.HighPart; g_FilePointer.QuadPart += pExOl->m_dwLen; WriteFileEx(pExOl->m_hFile, pExOl->m_pData, pExOl->m_dwLen, (LPOVERLAPPED)&pExOl->m_ol, FileIOCompletionRoutine); HANDLE hThreads[20] = {NULL}; for (int i = 0; i < 20; i++) //创建20个写线程 { hThreads[i] = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)WriteThreadProc, &hFile, 0, NULL); } while(WAIT_IO_COMPLETION == WaitForMultipleObjectsEx(20, hThreads, TRUE, INFINITE, TRUE)) //函数返回WAIT_IO_COMPLETION 表示执行了完成函数 { printf("有一个读写操作完成\n"); } for (int i = 0; i < 20; i++) { CloseHandle(hThreads[i]); } CloseHandle(hFile); _tsystem(_T("PAUSE")); return 0; }在上面的例子中,我们首先向文件中写入0xff, 0xfe这两个值,在Windows中存储Unicode字符串的文件都是以0xff 0xfe开头,所以在写入Unicode字符串之前需要写入这两个值然后创建了20个线程,每个线程负责往文件中写入100条数据。线程先创建了一个包含OVERLAPPED结构的数据类型,然后再使用InterlockedCompareExchange64同步文件指针,这句话的意思是,向将高速缓存中的数据与内存中的数据进行比较,如果二者的值相同,那么久更改全局的文件指针,否则就不进行变化。实际上在Intel架构的机器上存在大量的高速缓存,为了效率,有的时候会将一些数据放置到高速缓存中,这样造成高速缓存中一份,内存中也有一份,有的时候在进行值得更改时它只会改变内存中的值,而高速缓存中的值不会更新,在调用这个函数的时候第一个参数传入的是一个指针,取值操作会强制CPU到内存中进行访问,这样这句话实质上是比较高速缓存与内存中的值是否一致,如果不一致,那么说明它被其他的线程进行过修改,将新的文件指针进行了替换,那么这个时候不需要进行任何操作,在之前写入文件的末尾进行追加即可,如果没有发生修改,那么其他线程可能会在当前位置写入,本线程也在当前位置写的话会造成覆盖,所以往后偏移文件指针,使其他线程使用新偏移的位置,本线程使用当前的位置,这样就不会发生覆盖在完成历程中完成清理内存的任务。每个WriteFileEx都对应着内存的分配,完成后都会调用这个完成历程清理对应的内存,这样就不会造成内存泄露。最后在主线程中等待子线程的完成,然后关闭句柄并结束进程事件模型事件模型与之前的完成历程相似,只是它不需要设置完成函数,需要在OVERLAPPED结构中设置一个事件,当IO操作完成时会将这个事件设置为有信号,然后在需要进行同步的位置等待这个事件即可下面是它的具体的例子LARGE_INTEGER g_FilePointer = {0}; //全局的文件指针 struct ST_EXT_OVERLAPPED { OVERLAPPED m_ol; //后面的代码在使用的时候后 HANDLE m_hFile; //操作的文件句柄 LPVOID m_pData; //操作的内存 DWORD m_dwLen; //操作的数据长度 }; DWORD WriteThreadProc(LPVOID lpParameter) { HANDLE hFile = *(HANDLE*)(lpParameter); ST_EXT_OVERLAPPED* pExOl = NULL; TCHAR szBuf[256] = _T(""); StringCchPrintf(szBuf, 256, _T("这是一条模拟日志写入信息,由线程[%04x]写入\r\n"), GetCurrentThreadId()); size_t dwLen = 0; StringCchLength(szBuf, 256, &dwLen); dwLen += 1; //保存字符串结尾的\0 for (int i = 0; i < 100; i++) { pExOl = (ST_EXT_OVERLAPPED*)HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(ST_EXT_OVERLAPPED)); pExOl->m_dwLen = dwLen * sizeof(TCHAR); pExOl->m_pData = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, dwLen * sizeof(TCHAR)); StringCchCopy((TCHAR*)pExOl->m_pData, 256, szBuf); pExOl->m_hFile = hFile; pExOl->m_ol.hEvent = CreateEvent(NULL, FALSE, FALSE, NULL); //使用锁无关的方式进行同步操作 *((LONGLONG*)&pExOl->m_ol.Pointer) = InterlockedCompareExchange64(&g_FilePointer.QuadPart, g_FilePointer.QuadPart + pExOl->m_dwLen, g_FilePointer.QuadPart); DWORD dwWritten = 0; WriteFile(pExOl->m_hFile, pExOl->m_pData, pExOl->m_dwLen, &dwWritten, (OVERLAPPED*)&pExOl->m_ol); //do something if(WAIT_OBJECT_0 == WaitForSingleObject(pExOl->m_ol.hEvent, INFINITE)) { printf("线程[%04x],写入操作完成一次,继续等待写入.....\n", GetCurrentThreadId()); HeapFree(GetProcessHeap(), 0, pExOl->m_pData); HeapFree(GetProcessHeap(), 0, pExOl); } } return 0; } int _tmain(int argc, _TCHAR* argv[]) { HANDLE hFile = CreateFile(_T("log.txt"), GENERIC_ALL, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED, NULL);//让其支持异步操作 if (hFile == INVALID_HANDLE_VALUE) { printf("CreateFile error\n"); return GetLastError(); } ST_EXT_OVERLAPPED* pExOl = (ST_EXT_OVERLAPPED*)HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(ST_EXT_OVERLAPPED)); pExOl->m_hFile = hFile; pExOl->m_dwLen = sizeof(WORD); pExOl->m_pData = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(WORD)); *((WORD*)pExOl->m_pData) = MAKEWORD(0xff,0xfe); pExOl->m_ol.hEvent = CreateEvent(NULL, FALSE, FALSE, NULL); //文件指针的偏移 pExOl->m_ol.Offset = g_FilePointer.LowPart; pExOl->m_ol.OffsetHigh = g_FilePointer.HighPart; g_FilePointer.QuadPart += pExOl->m_dwLen; DWORD dwWritten = 0; WriteFile(pExOl->m_hFile, pExOl->m_pData, pExOl->m_dwLen, &dwWritten, (LPOVERLAPPED)&pExOl->m_ol); HANDLE hThreads[20] = {NULL}; //等待当前写入完成 if (WAIT_OBJECT_0 == WaitForSingleObject(pExOl->m_ol.hEvent, INFINITE)) { printf("写入头部操作完成\n"); HeapFree(GetProcessHeap(), 0, pExOl->m_pData); HeapFree(GetProcessHeap(), 0, pExOl); } for (int i = 0; i < 20; i++) //创建20个写线程 { hThreads[i] = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)WriteThreadProc, &hFile, 0, NULL); } WaitForMultipleObjects(20, hThreads, TRUE, INFINITE); for (int i = 0; i < 20; i++) { CloseHandle(hThreads[i]); } CloseHandle(hFile); _tsystem(_T("PAUSE")); return 0; }上面的例子与之前的完成历程的例子基本上一样,只是在OVERLAPPED结构中加入EVENT对象,并且没有完成历程,内存的清理工作需要在本线程中进行清理完成端口上述重叠IO在一定程度上解决的线程陷入等待的问题,但是从上面的代码上来看,仍然需要在本线程中进行等待操作,也就是说,如果在IO函数返回后进行某项操作,但是这项操作完成后而IO操作并没有完成,那么仍然要陷入等待,现在有一个想法,就是同步操作不在本线程中完成,另外开辟一个线程,将所有的等待操作都放到新线程中,而本线程就不必进行等待,同步线程只需要在操作完成的时候启动执行,这样几乎就不存在CPU等待IO设备的问题。主要的问题是,怎么向新线程传递同步对象,就像上面的例子来说,等待IO操作完成就是为了清理内存而已,这个时候如果创建新线程进行等待的话,总共有2000个写入操作,为了清理每块内存,需要定义一个2000O包含VERLAPPED结构的数组,然后当所有线程启动后将数组指针传入,如果为每个如果动态添加新的写入线程,那就必须修改数组大小。这给编程造成了很大的麻烦,为了解决这个问题,VC中引入了完成端口模型本质上完成端口利用了线程池机制并结合了重叠IO的优势,在Windows下这种IO模型是最高效的一种。完成端口首先创建对应数量的线程的线程池,然后将相关的文件句柄与完成端口对象绑定,并传入一个OVERLAPPED结构的指针,然后进行等待,一旦有IO操作完成,就会启动完成端口中的线程,完成后续的操作。完成端口的使用一般经过下面几个步骤:调用CreateIoCompletionPort创建完成端口对象,并制定最大并发线程数(一般制定CPU核数或者核数的两倍)创建用于完成端口的线程,一般大于等于最大并发数调用函数CreateIoCompletionPort,将文件句柄与完成端口绑定在IO操作中传入一个OVERLAPPED结构在完成端口的线程中调用GetQueuedCompletionStatus进行等待,当有IO操作完成时函数会返回,对应的线程就可以启动执行函数CreateIoCompletionPort原型如下HANDLE WINAPI CreateIoCompletionPort( __in HANDLE FileHandle, __in_opt HANDLE ExistingCompletionPort, __in ULONG_PTR CompletionKey, __in DWORD NumberOfConcurrentThreads );第一个参数是文件句柄,第二参数是完成端口句柄,第三个参数是一个完成的标识。一般给NULL,第四个是最大线程数。一般在操作的时候如果是创建完成端口句柄,那么只需要指定最大并发线程数,如果是将文件句柄和完成端口对象进行绑定,只需要提供前连个参数。在下面的例子中可以很清楚的看到它的用法下面是一个使用完成端口的例子:LARGE_INTEGER g_FilePointer = {0}; //全局的文件指针 struct ST_EXT_OVERLAPPED { OVERLAPPED m_ol; //后面的代码在使用的时候后 HANDLE m_hFile; //操作的文件句柄 LPVOID m_pData; //操作的内存 DWORD m_dwLen; //操作的数据长度 BOOL bExit; }; DWORD WriteThreadProc(LPVOID lpParameter) { HANDLE hFile = *(HANDLE*)(lpParameter); ST_EXT_OVERLAPPED* pExOl = NULL; TCHAR szBuf[256] = _T(""); StringCchPrintf(szBuf, 256, _T("这是一条模拟日志写入信息,由线程[%04x]写入\r\n"), GetCurrentThreadId()); size_t dwLen = 0; StringCchLength(szBuf, 256, &dwLen); dwLen += 1; //保存字符串结尾的\0 for (int i = 0; i < 100; i++) { pExOl = (ST_EXT_OVERLAPPED*)HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(ST_EXT_OVERLAPPED)); pExOl->m_dwLen = dwLen * sizeof(TCHAR); pExOl->m_pData = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, dwLen * sizeof(TCHAR)); StringCchCopy((TCHAR*)pExOl->m_pData, 256, szBuf); pExOl->m_hFile = hFile; pExOl->bExit = FALSE; //使用锁无关的方式进行同步操作 *((LONGLONG*)&pExOl->m_ol.Pointer) = InterlockedCompareExchange64(&g_FilePointer.QuadPart, g_FilePointer.QuadPart + pExOl->m_dwLen, g_FilePointer.QuadPart); DWORD dwWritten = 0; WriteFile(pExOl->m_hFile, pExOl->m_pData, pExOl->m_dwLen, &dwWritten, (OVERLAPPED*)&pExOl->m_ol); } return 0; } DWORD IocpThreadProc(LPVOID lpParameter) { HANDLE hIocp = *(HANDLE*)lpParameter; DWORD dwBytesTransfered = 0; DWORD dwFlags = 0; LPOVERLAPPED pOl = NULL; while (TRUE) { ST_EXT_OVERLAPPED* pExOl = NULL; BOOL bRet = GetQueuedCompletionStatus(hIocp, 0, 0, &pOl, INFINITE);//MSDN上说如果完成端口队列为空,那么函数会返回FLASE,并且pOl为NUULL, 所以在这进行判断,如果为FLASE,就不往下执行,否则程序会崩溃 if (!bRet) { continue; } pExOl = (ST_EXT_OVERLAPPED*)pOl; if (pExOl->bExit) { printf("收到退出消息,IOCP线程[%04x]退出", GetCurrentThreadId()); HeapFree(GetProcessHeap(), 0, pExOl); return 0; } printf("有一个线程的写入操作完成\n"); HeapFree(GetProcessHeap(), 0, pExOl->m_pData); HeapFree(GetProcessHeap(), 0, pExOl); } } int _tmain(int argc, _TCHAR* argv[]) { HANDLE hFile = CreateFile(_T("log.txt"), GENERIC_ALL, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED, NULL);//让其支持异步操作 if (hFile == INVALID_HANDLE_VALUE) { printf("CreateFile error\n"); return GetLastError(); } //创建IOCP内核对象并制定最大并发线程数 SYSTEM_INFO si = {0}; GetSystemInfo(&si); HANDLE hIocp = CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, NULL, 2 * si.dwNumberOfProcessors); //创建IOCP线程 HANDLE* hIocpThreads = (HANDLE*)HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, 2 * si.dwNumberOfProcessors * sizeof(HANDLE)); for (int i = 0; i < 2 * si.dwNumberOfProcessors; i++) { hIocpThreads[i] = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)IocpThreadProc, &hIocp, 0, NULL); } //将文件句柄与IOCP句柄绑定 CreateIoCompletionPort(hFile, hIocp, NULL, 0); ST_EXT_OVERLAPPED* pExOl = (ST_EXT_OVERLAPPED*)HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(ST_EXT_OVERLAPPED)); pExOl->m_hFile = hFile; pExOl->m_dwLen = sizeof(WORD); pExOl->m_pData = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(WORD)); *((WORD*)pExOl->m_pData) = MAKEWORD(0xff,0xfe); pExOl->bExit = FALSE; //文件指针的偏移 pExOl->m_ol.Offset = g_FilePointer.LowPart; pExOl->m_ol.OffsetHigh = g_FilePointer.HighPart; g_FilePointer.QuadPart += pExOl->m_dwLen; DWORD dwWritten = 0; WriteFile(pExOl->m_hFile, pExOl->m_pData, pExOl->m_dwLen, &dwWritten, (LPOVERLAPPED)&pExOl->m_ol); HANDLE hThreads[20] = {NULL}; for (int i = 0; i < 20; i++) //创建20个写线程 { hThreads[i] = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)WriteThreadProc, &hFile, 0, NULL); } //等待写入线程的完成 WaitForMultipleObjects(20, hThreads, TRUE, INFINITE); for (int i = 0; i < 20; i++) { CloseHandle(hThreads[i]); } //关闭IOCP线程 for (int i = 0; i < 2 * si.dwNumberOfProcessors; i++) { ST_EXT_OVERLAPPED* pExitMsg = (ST_EXT_OVERLAPPED*)HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(ST_EXT_OVERLAPPED)); pExitMsg->bExit = TRUE; PostQueuedCompletionStatus(hIocp, 0, 0, &pExitMsg->m_ol); } //关闭IOCP线程句柄 for (int i = 0; i < 2 * si.dwNumberOfProcessors; i++) { CloseHandle(hIocpThreads[i]); } CloseHandle(hFile); _tsystem(_T("PAUSE")); return 0; }
2017年06月11日
4 阅读
0 评论
0 点赞
2017-06-04
使用CJSON库实现XML与JSON格式的相互转化
之前完成了一个两个平台对接的项目。由于这两个平台一个是使用json格式的数据,一个是使用xml格式的数据,要实现它们二者的对接就涉及到这两个数据格式的转化,在查阅相关资料的时候发现了这个CJSON库,cjson是使用c编写的,它轻巧易用,在网上查了相关的资料后决定在json格式的存储于解析这块采用cjson库,而xml就简单的来解析字符串。cjson库中常用的几个函数简介cJSON_Parse该函数需要传入一个json格式的字符串,函数会将这个字符串转化为json格式保存起来,函数会返回一个表示json对象的指针,如果传入json格式字符串有误,函数会返回NULL,所以在之后如果要使用它生成的json对象的指针,一定要校验指针值cJSON_CreateObject创建一个json格式的对相关,用来保存之后的json格式数据cJSON_CreateArray创建一个json格式的数组cJSON_AddItemToObject将某个数据插入到对应的json对象中,函数需要三个参数,第一个参数是一个json对象,表示要往哪个json对象里面插入数据,第二个参数是一个字符串指针,表示该项的键值,第三个参数是一个json对象,表示要将何种对象插入到json对象中,这个函数一般是用来插入一个数组对象cJSON_AddNumberToObject对于插入数值,或者字符串值,如果调用cJSON_AddItemToObject,需要向将他们转化为json对象然后插入,为了方便库中提供了一个宏来方便插入数字值,它的参数与cJSON_AddItemToObject类似,只是最后一个参数是一个数字值cJSON_AddStringToObject将字符串插入json对象中,它的用法与cJSON_AddNumberToObject相同cJSON_Print将json对象转化为json格式的字符串cJson_Delete由于cjson对象是用malloc函数分配的内存,所以需要使用这个函数来释放分配的内存,否则会造成内存泄露。这个函数会释放对象中的所有内存单元,包括使用相关函数添加到对象中的子对象,所以在释放了对象的内存后,它的子对象的内存就不需要再次释放了cJosn结构体typedef struct cJSON { struct cJSON *next; struct cJSON *prev; struct cJSON *child; int type; char *valuestring; int valueint; double valuedouble; char *string; } cJSON;cjson中采用该结构体来存储json格式的数据,这个结构体存储的是json格式的单个项,其中为了能存储所有常用类型的数据,在里面定义了三种类型的成员,分别表示不同的数据类型值,string 成员表示的是该项的键值;它里面的三个指针分别表示同级别的下一项,上一项以及它的子节点,这些值在遍历这个json对象中的数据时需要用到具体的算法json格式转化为xml格式string CJson::Json2Xml(const string &strJson) { string strXml = ""; cJSON *pRoot = cJSON_Parse(strJson.c_str()); if (NULL == pRoot) { return ""; } cJSON *pChild = pRoot->child; while (pChild != NULL) { if (pChild->child != NULL) //存在子节点的情况 { std::string strSubKey = pChild->string; //获取它的键 std::string strSubValue = Json2Xml(cJSON_Print(pChild)); //获取它的值 std::string strSubXml = "<" + strSubKey + ">" + strSubValue + "</" + strSubKey + ">"; strXml += strSubXml; }else { std::string strKey = pChild->string; std::string strVal = ""; if (pChild->valuestring != NULL) { string strTemp = pChild->valuestring; strVal = "\"" + strTemp + "\""; }else { //其余情况作为整数处理 strVal = cJSON_Print(pChild); } strXml = strXml + "<" + strKey + ">" + strVal + "</" + strKey + ">"; } pChild = pChild->next; } if(NULL != pRoot) { cJson_Delete(pRoot); } return strXml; }上述代码首先将传进来的json格式的字符串转化为json对象,然后再遍历这个json对象。cjson在存储json格式的数据时,首先利用一个空的cJson结构体来保存整个json格式,类似于存在头指针的链表,它的child节点指针指向的是里面的第一个成员的信息,所以在遍历之前需要将指针偏移到它的child节点处。这个遍历的整体思想是:依次遍历它的同级节点,分别取出它的键和值key、value,并且将这一项组织成类似于<key>value</key>它的同级节点以相同的字符串结构添加到它的后面。如果某个成员中有子节点,那么递归调用这个函数,,并将返回的值作为value,在它的两侧加上key的标签。另外在遍历的时候需要注意的是它的值,其实这块可以使用cjson结构中的type来做更精准的判断,之前我在写这块的代码的时候没有仔细的查看库的源代码,所以简单的利用valuestring指针来判断,如果是字符串那么在字符串的两侧加上引号,否则什么都不加,在生成的xml中只需要判断值中是否有引号,有则表示它是一个字符串,否则是一个数字类型的值xml转json//暂时不考虑xml标签中存在属性值的问题 string CJson::Xml2Json(const string &strxml) { cJSON *pJsonRoot = cJSON_CreateObject(); string strNext = strxml; int nPos = 0; while ((nPos = strNext.find("<")) != -1) { string strKey = GetXmlKey(strNext); string strValue = GetXmlValueFromKey(strNext, strKey); string strCurrXml = strNext; strNext = GoToNextItem(strNext, strKey); int LabelPos = strValue.find("<"); // < 所在位置 int nMarkPos = strValue.find("\""); // " 所在位置 if (strValue != "" && LabelPos != -1 && LabelPos < nMarkPos) //引号出现在标签之后 { //里面还有标签 string strNextKey = GetXmlKey(strNext); //下一个的标签与这个相同,则为一个数组 if (strNextKey == strKey) { cJSON *pArrayObj = cJSON_CreateArray(); int nCnt = GetArrayItem(strCurrXml); for (int i = 0; i < nCnt; i++) { strKey = GetXmlKey(strCurrXml); strValue = GetXmlValueFromKey(strCurrXml, strKey); string strArrayItem = Xml2Json(strValue); cJSON *pArrayItem = cJSON_Parse(strArrayItem.c_str()); cJSON_AddItemToArray(pArrayObj, pArrayItem); strCurrXml = GoToNextItem(strCurrXml, strKey); } cJSON_AddItemToObject(pJsonRoot, strNextKey.c_str(), pArrayObj); strNext = strCurrXml; }else { //否则为普通对象 string strSubJson = Xml2Json(strValue); cJSON *pSubJsonItem = cJSON_CreateObject(); pSubJsonItem = cJSON_Parse(strSubJson.c_str()); cJSON_AddItemToObject(pJsonRoot, strKey.c_str(), pSubJsonItem); } } else { if (strValue.find("\"") == -1) //这个是数字 { cJSON_AddNumberToObject(pJsonRoot, strKey.c_str(), atof(strValue.c_str())); }else { remove_char(strValue, '\"'); cJSON_AddStringToObject(pJsonRoot, strKey.c_str(), strValue.c_str()); } } } string strJson = cJSON_Print(pJsonRoot); cJson_Delete(pJsonRoot); return strJson; }就像注释上说的,这段代码没有考虑xml中标签存在属性的问题,如果考虑上的话,我的想法是将属性作为该项的子项,给子项对应的键名做一个约定,以某个规律来命名,比如"标签名_contrib",这样在解析的时候一旦出现后面带有contrib的字符样式,就知道它是属性,后面就遍历这个子节点取出并以字符串的形式保存即可算法的思想跟之前的类似,在这我定义了几个函数用来从xml中取出每一项的键,值信息,然后将这些信息保存到json对象中,最后生成一个完整的json对象,调用print函数将对象转化为json格式的字符串。在while表示如果它的后面没有"<"表示后面就没有对应的值,这个时候就是xml格式的数据遍历完了,这个时候结循环中判断了下是否存在下一个标签,如果没有则结束循环,返回json格式字符串,函数返回。在循环中依次遍历它的每一个标签,在第一个if判断中出现这样的语句strValue != "" && LabelPos != -1 && LabelPos < nMarkPos,strValue表示的是标签中的值,LabelPos表示值中出现"<"的位置,而nMarkPos表示引号出现的位置,结合它们三个变量表示的含义,其实这句话表示如果值里面有"<"并且这个出现在引号之前,那么就说明是标签套标签,也就是存在子标签,这个时候需要递归调用函数,解析子标签的内存,如果这个"<"符号出现在引号之后,则表示它只是值中字符串的一部分,并没有子标签,这个时候就不需要进行递归。另外还判断了是否存在数组的情况,在json中数组是以一个类似于子对象的方式存储的,所在转化为xml时会将它作为一个子项存储,只是它的标签于父项的标签相同,所以判断数组的语句是当它存在子项时进行的,当得到它是一个数组时,会往后一直遍历,直到下一个标签不同于它,找到数组之后依次将这些值插入数组对象,并将整个数组对象插入到json对象中。当它只是一个普通的对象时会根据是否存在引号来判断它是否是字符串,然后调用不同的添加项的函数来插入数据最后将json对象转化为字符串,清空内存并返回函数(万别忘记清理内存)整个项目的下载地址:下载
2017年06月04日
4 阅读
0 评论
0 点赞
1
...
10
11
12
...
19