首页
归档
友情链接
关于
Search
1
在wsl2中安装archlinux
80 阅读
2
nvim番外之将配置的插件管理器更新为lazy
58 阅读
3
2018总结与2019规划
54 阅读
4
PDF标准详解(五)——图形状态
33 阅读
5
为 MariaDB 配置远程访问权限
30 阅读
心灵鸡汤
软件与环境配置
博客搭建
从0开始配置vim
Vim 从嫌弃到依赖
archlinux
Emacs
MySQL
Git与Github
AndroidStudio
cmake
读书笔记
菜谱
编程
PDF 标准
从0自制解释器
qt
C/C++语言
Windows 编程
Python
Java
算法与数据结构
PE结构
登录
Search
标签搜索
c++
c
学习笔记
windows
文本操作术
编辑器
NeoVim
Vim
win32
VimScript
Java
emacs
linux
文本编辑器
elisp
反汇编
OLEDB
数据库编程
数据结构
内核编程
Masimaro
累计撰写
308
篇文章
累计收到
27
条评论
首页
栏目
心灵鸡汤
软件与环境配置
博客搭建
从0开始配置vim
Vim 从嫌弃到依赖
archlinux
Emacs
MySQL
Git与Github
AndroidStudio
cmake
读书笔记
菜谱
编程
PDF 标准
从0自制解释器
qt
C/C++语言
Windows 编程
Python
Java
算法与数据结构
PE结构
页面
归档
友情链接
关于
搜索到
1
篇与
的结果
2016-01-03
地址、指针与引用
计算机本身是不认识程序中给的变量名,不管我们以何种方式给变量命名,最终都会转化为相应的地址,编译器会生成一些符号常量并且与对应的地址相关联,以达到访问变量的目的。 变量是在内存中用来存储数据以供程序使用,变量主要有两个部分构成:变量名、变量类型,其中变量名对应了一块具体的内存地址,而变量类型则表明该如何翻译内存中存储的二级制数。我们知道不同的类型翻译为二进制的值不同,比如整型是直接通过数学转化、浮点数是采用IEEE的方法、字符则根据ASCII码转化,同样变量类型决定了变量所占的内存大小,以及如何在二进制和变量所表达的真正意义之间转化。而指针变量也是一个变量,在内存中也占空间,不过比较特殊的是它存储的是其他变量的地址。在32位的机器中,每个进程能访问4GB的内存地址空间,所以程序中的地址采用32位二进制数表示,也就是一个整型变量的长度,地址值一般没有负数所以准确的说指针变量的类型应该是unsigned int 即每个指针变量占4个字节。还记得在定义结构体中可以使用该结构体的指针作为成员,但是不能使用该结构的实例作为成员吗?这是因为编译器需要根据各个成员变量的大小分配相关的内存,用该结构体的实例作为成员时,该结构体根本没有定义完整,编译器是不会知道该如何分配内存的,而任何类型的指针都只占4个字节,编译器自然知道如何分配内存。我们在书写指针变量时给定的类型是它所指向的变量的类型,这个类型决定了如何翻译所对应内存中的值,以及该访问多少个字节的内存。对指针的间接访问会先先取出值,访问到对应的内存,再根据指针所指向的变量的类型,翻译成对应的值。一般指针只能指向对应类型的变量,比如int类型的指针只能指向int型的变量,而有一种指针变量可以指向所有类型的变量,它就是void类型的指针变量,但是由于这种类型的变量没有指定它所对应的变量的类型,所以即使有了对应的地址,它也不知道该取多大内存的数据,以及如何解释这些数据,所以这种类型的指针不支持间接访问,下面是一个间接访问的例子:int main() { int nValue = 10; float fValue = 10.0f; char cValue = 'C'; int *pnValue = &nValue; float *pfValue = &fValue; char *pcValue = &cValue; printf("pnValue = %x, *pnValue = %d\n", pnValue, *pnValue); printf("pfValue = %x, *pfValue = %f\n", pfValue, *pfValue); printf("pcValue = %x, *pcValue = %c\n", pcValue, *pcValue); return 0; }下面是它对应的反汇编代码(部分):10: int nValue = 10; 00401268 mov dword ptr [ebp-4],0Ah 11: float fValue = 10.0f; 0040126F mov dword ptr [ebp-8],41200000h 12: char cValue = 'C'; 00401276 mov byte ptr [ebp-0Ch],43h 13: int *pnValue = &nValue; 0040127A lea eax,[ebp-4] 0040127D mov dword ptr [ebp-10h],eax 14: float *pfValue = &fValue; 00401280 lea ecx,[ebp-8] 00401283 mov dword ptr [ebp-14h],ecx 15: char *pcValue = &cValue; 00401286 lea edx,[ebp-0Ch] 00401289 mov dword ptr [ebp-18h],edx 16: printf("pnValue = %x, *pnValue = %d\n", pnValue, *pnValue); 0040128C mov eax,dword ptr [ebp-10h] 0040128F mov ecx,dword ptr [eax] 00401291 push ecx 00401292 mov edx,dword ptr [ebp-10h] 00401295 push edx 00401296 push offset string "pnValue = %x, *pnValue = %d\n" (00432064) 0040129B call printf (00401580) 004012A0 add esp,0Ch从上面的汇编代码可以看到指针变量会占内存空间,它们的地址分别是:[ebp - 10h] 、 [ebp - 14h]、 [ebp - 18h],在给指针变量赋值时首先将变量的地址赋值给临时寄存器,然后将寄存器的值赋值给指针变量,而通过间接访问时也经过了一个临时寄存器,先将指针变量的值赋值给临时寄存器(mov eax,dword ptr [ebp-10h])然后通过这个临时寄存器访问变量的地址空间,得到变量值( mov ecx,dword ptr [eax]),由于间接访问进过了这几步,所以在效率上是比不上直接使用变量。下面是对char型变量的间接访问:004012BF mov edx,dword ptr [ebp-18h] 004012C2 movsx eax,byte ptr [edx] 004012C5 push eax首先也是将指针变量的值取出来,放到寄存器中,然后根据寄存器寻址找到变量对应的地址,访问变量。其中”bye ptr“表示只操作该地址中的一个字节。对于地址我们可以进行加法和减法操作,地址的加法主要用于向下寻址,一般用于数组等占用连续内存空间的数据结构,一般是地址加上一个数值,表示向后偏移一定的单位,指针同样也有这样的操作,但是与地址值不同的是指针每加一个单位,表示向后偏移一个元素,而地址值加1则就是在原来的基础上加上一。指针偏移是根据其所指向的变量类型来决定的,比如有下面的程序:int main(int argc, char* argv[]) { char szBuf[5] = {0x01, 0x23, 0x45, 0x67, 0x89}; int *pInt = (int*)szBuf; short *pShort = (short*)szBuf; char *pChar = szBuf; pInt += 1; pShort += 1; pChar += 1; return 0; }它的汇编代码如下:9: char szBuf[5] = {0x01, 0x23, 0x45, 0x67, 0x89}; 00401028 mov byte ptr [ebp-8],1 0040102C mov byte ptr [ebp-7],23h 00401030 mov byte ptr [ebp-6],45h 00401034 mov byte ptr [ebp-5],67h 00401038 mov byte ptr [ebp-4],89h 10: int *pInt = (int*)szBuf; 0040103C lea eax,[ebp-8] 0040103F mov dword ptr [ebp-0Ch],eax 11: short *pShort = (short*)szBuf; 00401042 lea ecx,[ebp-8] 00401045 mov dword ptr [ebp-10h],ecx 12: char *pChar = szBuf; 00401048 lea edx,[ebp-8] 0040104B mov dword ptr [ebp-14h],edx 13: 14: pInt += 1; 0040104E mov eax,dword ptr [ebp-0Ch] 00401051 add eax,4 00401054 mov dword ptr [ebp-0Ch],eax 15: pShort += 1; 00401057 mov ecx,dword ptr [ebp-10h] 0040105A add ecx,2 0040105D mov dword ptr [ebp-10h],ecx 16: pChar += 1; 00401060 mov edx,dword ptr [ebp-14h] 00401063 add edx,1 00401066 mov dword ptr [ebp-14h],edx根据其汇编代码可以看出,对于int型的指针,每加1个会向后偏移4个字节,short会偏移2个字节,char型的会偏移1个,所以根据以上的内容,可以得出一个公式:TYPE P p + n = p + sizeof(TYPE) n根据上面的加法公式我们可以推导出两个指针的减法公式,TYPE p1, TYPE p2: p2 - p1 = ((int)p2 - (int)p1) / sizeof(TYPE),两个指针相减得到的结果是两个指针之间拥有元素的个数。只有同类型的指针之间才可以相减。而指针的乘除法则没有意义,地址之间的乘除法也没有意义。引用是在C++中提出的,是变量的一个别名,提出引用主要是希望减少指针的使用,引用于指针在一个函数中想上述例子中那样使用并没有太大的意义,大量使用它们是在函数中,作为参数传递,不仅可以节省效率,同时也可以传递一段缓冲,作为输出参数来使用。这大大提升了程序的效率以及灵活性。但是在一些新手程序员看来指针无疑是噩梦般的存在,所以C++引入了引用,希望代替指针。在一般的C++书中都说引用是变量的一个别名是不占内存的,但是我通过查看反汇编代码发现引用并不是向书上说的那样,下面是一段程序及它的反汇编代码:int nValue = 10; int &rValue = nValue; printf("%d\n", rValue);10: int nValue = 10; 00401268 mov dword ptr [ebp-4],0Ah 11: int &rValue = nValue; 0040126F lea eax,[ebp-4] 00401272 mov dword ptr [ebp-8],eax 12: printf("%d\n", rValue); 00401275 mov ecx,dword ptr [ebp-8] 00401278 mov edx,dword ptr [ecx] 0040127A push edx 0040127B push offset string "%d\n" (0042e01c) 00401280 call printf (00401520)从汇编代码中可以看到,在定义引用并为它赋值的过程中,编译器其实是将变量的地址赋值给了一个新的变量,这个变量的地址是[ebp - 8h],在调用printf函数的时候,编译器将地址取出并将它压到函数栈中。下面是将引用改为指针的情况:10: int nValue = 10; 00401268 mov dword ptr [ebp-4],0Ah 11: int *pValue = &nValue; 0040126F lea eax,[ebp-4] 00401272 mov dword ptr [ebp-8],eax 12: printf("%d\n", *pValue); 00401275 mov ecx,dword ptr [ebp-8] 00401278 mov edx,dword ptr [ecx] 0040127A push edx 0040127B push offset string "%d\n" (0042e01c) 00401280 call printf (00401520)两种情况的汇编代码完全一样,也就是说引用其实就是指针,编译器将其包装了一下,使它的行为变得和使用变量相同,而且在语法层面上做了一个限制,引用在定义的时候必须初始化,且初始化完成后就不能指向其他变量,这个行为与常指针相同。
2016年01月03日
3 阅读
0 评论
0 点赞